轻钢房屋整体风致易损性分析

吴凤波1,姚新桂1,周豪杰2,黄国庆2,聂诗东2,冀骁文3,宫婷4

振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 84-93.

PDF(2759 KB)
PDF(2759 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (9) : 84-93.
论文

轻钢房屋整体风致易损性分析

  • 吴凤波1,姚新桂1,周豪杰2,黄国庆2,聂诗东2,冀骁文3,宫婷4
作者信息 +

Wind induced vulnerability analysis for a whole light steel building

  • WU Fengbo1, YAO Xingui1, ZHOU Haojie2, HUANG Guoqing2, NIE Shidong2, JI Xiaowen3, GONG Ting4
Author information +
文章历史 +

摘要

轻钢房屋被广泛用于民宅和厂房等低矮建筑中。该类结构轻质,对风荷载较为敏感,在台风中破坏严重,造成了巨大的经济损失,因此对该结构进行风灾评估具有重要意义。首先,基于随机模拟技术提出了轻钢房屋整体结构风致易损性的分析框架,其中涉及风荷载随机化方法、主体结构和围护结构风致易脆性分析方法以及房屋整体结构风致易损性分析流程。其次,基于所提框架对一具体轻钢结构风致易损性进行了案例分析,结果表明:所提方法较好考虑了飞掷物和风压联合作用及其造成的内压变化效应,并可将主体结构和围护结构的风灾损失进行融合,获得结构整体易损性曲线。

Abstract

Light steel houses are widely used in low-rise buildings such as residential houses and factories. The structures are light in weight and thus sensitive to wind loads. It has been severely damaged in typhoons, which has caused a lot of economic losses, thus the wind disaster risk assessment of light steel structures is of great significance. Based on this, the wind-induced fragility and vulnerability of light steel buildings will be studied. Firstly, an analysis framework for the wind-induced vulnerability of the overall structure of light steel houses is proposed based on stochastic simulation technology, which involves the wind load randomization method, the wind-induced fragility analysis method of the main structure and the envelope structure, and the wind-induced vulnerability analysis procedure of the overall structure. Then, the proposed framework has been used to analyze the wind-induced vulnerability of a specific light steel structure, and the numerical analysis results demonstrate that the proposed method takes into account the combined effect of windborne debris and wind pressure, and the change of internal pressure. In addition, the method can integrate the wind-induced loss of the main structure and the envelope structure to obtain the overall vulnerability curve of the structure.

关键词

轻钢房屋 / 主体结构 / 围护结构 / 风致易脆性 / 风致易损性

Key words

light steel house / main structure / envelope structure / wind-induced fragility / wind-induced vulnerability

引用本文

导出引用
吴凤波1,姚新桂1,周豪杰2,黄国庆2,聂诗东2,冀骁文3,宫婷4. 轻钢房屋整体风致易损性分析[J]. 振动与冲击, 2024, 43(9): 84-93
WU Fengbo1, YAO Xingui1, ZHOU Haojie2, HUANG Guoqing2, NIE Shidong2, JI Xiaowen3, GONG Ting4. Wind induced vulnerability analysis for a whole light steel building[J]. Journal of Vibration and Shock, 2024, 43(9): 84-93

参考文献

[1] 金玉芬, 杨庆山, 李启. 轻钢房屋围护结构的台风灾害调查与分析[J]. 建筑结构学报, 2010,31(S2):197-201. JIN Yufen, YANG Qingshan, LI Qi. Typhoon damage investigation of claddings of light steel buildings[J]. Journal of Building Structures, 2010, 31(S2): 197-201. [2] Yang, Q., Gao, R., Bai, F., et al.. Damage to buildings and structures due to recent devastating wind hazards in East Asia[J]. Natural Hazards, 2018, 92(3): 1321-1353. [3] Stewart, M. G., Ryan, P. C., Henderson, D. J., et al.. Fragility analysis of roof damage to industrial buildings subject to extreme wind loading in non-cyclonic regions[J]. Engineering Structures, 2016, 128: 333-343. [4] Ji, X., Huang, G., Zhang, X., Kopp, G. A. Vulnerability analysis of steel roofing cladding: Influence of wind directionality[J]. Engineering Structures, 2018, 156: 587-597. [5] 赵明伟, 顾明. 轻型钢结构风灾易损性概率分析[J].中南大学学报(自然科学版), 2012, 43(09): 3609-3618. ZHAO Mingwei, Gu Ming. Probabilistic wind vulnerability analysis of light-weight steel buildings[J]. Journal of Central South University (Science and Technology), 2012, 43(09): 3609-3618. [6] 吴凤波, 冀骁文, 黄国庆, 等. 基于简化渐进破坏的低矮房屋围护结构风致易损性分析[J]. 建筑结构学报, 2021, 42(05): 32-39. WU Fengbo, JI Xiaowen, HUANG Guoqing, et al..Wind-induced fragility analysis of low-rise building envelope based on simplified progressive damage[J]. Journal of Building Structures, 2021, 42(05): 32-39. [7] 陈胜,黄鹏,顾明. 风致飞掷物冲击建筑浮法玻璃实验和数值模拟[J]. 振动与冲击, 2022, 41(1): 24-30. CHEN Sheng, HUANG Peng, GU Ming. Tests and numerical simulation of wind-induced flying projectile impacting building float glass. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(1): 24-30. [8] 吴凤波,黄国庆,刘敏,彭留留 非高斯风压极值估计:基于矩的转换过程法的抽样误差对比研究[J]. 振动与冲击, 2020, 39(18): 20-26. WU Fengbo,HUANG Guoqing,LIU Min,PENG Liuliu. Extremes estimation of non-Gaussian wind pressures: a comparative study on sampling errors based on a moment-based translation process model. JOURNAL OF VIBRATION AND SHOCK, 2020, 39(18): 20-26. [9] 闫业祥,孙利民. 基于高斯过程回归的桥梁多变量地震易损性分析[J]. 振动与冲击, 2022, 41(23): 27-35. YAN Yexiang1, SUN Limin. Multivariate seismic vulnerability analysis of bridges based on Gaussian process regression. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(23): 27-35. [10] ASCE standard 7-16, Minimum design loads for buildings and other structures[S]. American Society of Civil Engineers (ASCE), 2016, Reston, Va. [11] Ellingwood, B. R., Tekie, P. B. Wind load statistics for probability-based structural design[J]. Journal of Structural Engineering, 1999, 125(4): 453-463. [12] Jang, S., Lu, L. W., Sadek, F., Simiu, E. Database-Assisted Wind Load Capacity Estimates for Low-Rise Steel Frames[J]. Journal of Structural Engineering, 2002, 128(12):1594-1603. [13] 周奎, 李伟, 余金鑫. 地震易损性分析方法研究综述[J]. 地震工程与工程振动, 2011, 31(01): 106-113. ZHOU Kui, LI Wei, YU Jinxin. Review of seismic frag ility analysis methods[J]. Earthquake Engineering and Engineering Vibration, 2011, 31(01):106-113. [14] Vickery, P. J., Skerlj, P. F., Lin, J., et al.. HAZUS-MH hurricane model methodology II: Damage and Loss Estimation[J]. Natural Hazards Review, 2006, 7(2): 94-103. [15] 吴凤波,姜言,彭留留,吴波,罗颖. 基于矩的传递函数模型的“不兼容”非高斯风压过程模拟研究[J]. 振动与冲击, 2022, 41(24): 142-149. WU Fengbo,JIANG Yan,PENG Liuliu,WU Bo,LUO Ying. Simulation of “incompatible” non-Gaussian wind pressures based on a moment-based translation function model. JOURNAL OF VIBRATION AND SHOCK, 2022, 41(24): 142-149. [16] 雷旭,付兴, 肖凯, 等. 强风作用下输电塔结构不确定性倒塌分析[J].中国电机工程学报, 2018,38(S1):266-274. LEI Xu, FU Xing, XIAO Kai, et al.. Failure Analysis of a Transmission Tower Subjected to Wind Load Using Uncertainty Method[J]. Proceedings of the CSEE, 2018, 38(S1): 266-274. [17] GB50068-2018, 建筑结构可靠度设计统一标准[S]. 北京: 中国建筑工业出版社, 2018. GB50068-2018, Unified standard reliability design of building structures[S]. Beijing: China Architecture & Building Press, 2018. [18] 李昆, 刘章军, 孙开畅. 我国公路钢桥结构的可靠度校 准分析[J].武汉大学学报(工学版), 2010,43(04):499-506. LI Kun, LIU Zhangjun, SUN Kaichang. Calibration analysis of reliability of steel highway bridges in China[J]. Engineering Journal of Wuhan University, 2010, 43(04): 499-506. [19] 夏俞超, 陈水福. 轻钢结构抗风极限承载力的三维精细分析[J]. 钢结构, 2017, 32(07): 54-59. XIA Yuchao, CHEN Shuifu. 3D refined analysis of wind-resistant ultimate bearing capacity of light-weight steel structures[J]. Steel Construction, 2017, 32(07): 54-59. [20] Naess, A., Clausen, P. H. Combination of the peaks-over-threshold and bootstrapping methods for extreme value prediction[J]. Structural Safety, 2001, 23(4): 315-330. [21] Mahaarachchi, D., Mahendran, M. Wind uplift strength of trapezoidal steel cladding with closely spaced ribs[J]. Journal of Wind engineering and industrial Aerodynamics, 2009, 97(3-4): 140-150. [22] Cope, A. D. Predicting the vulnerability of typical residential buildings to hurricane damage [D]. Florida: University of Florida. Department of Civil and Coastal Engineering, 2004: 70.

PDF(2759 KB)

292

Accesses

0

Citation

Detail

段落导航
相关文章

/