考虑边缘效应的静电驱动MEMS振子非线性振动定性研究

李佰洲1, 韩建鑫1, 2, 黄仪1, 崔良玉1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 10-19.

PDF(3293 KB)
PDF(3293 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 10-19.
振动理论与交叉研究

考虑边缘效应的静电驱动MEMS振子非线性振动定性研究

  • 李佰洲1,韩建鑫*1,2 ,黄仪1,崔良玉1,2
作者信息 +

Qualitative study on nonlinear vibration of electrostatically actuated MEMS oscillator considering fringing effects

  • LI Baizhou1, HAN Jianxin*1,2, HUANG Yi1, CUI Liangyu1,2
Author information +
文章历史 +

摘要

应用非线性动力学理论定性研究了考虑边缘效应的静电驱动微机电系统(micro-electromechanical  system,MEMS)振子的非线性主共振问题。首先,应用微分求积法的空间离散处理得到了系统的单自由度动力学方程;其次,应用分岔理论研究了系统的静态分岔特征,推导并定义了无量纲临界立方刚度、一次吸合电压和二次吸合电压;然后,应用多尺度方法得到了系统的频响函数,定义了小幅振动频响软硬特性转换的无量纲临界电压;最后,结合动态吸合条件与软硬转换临界控制方程,讨论了系统的主共振以及阱间跳跃的动态规律。该研究对于定性掌握静电驱动MEMS振子的静动态吸合及主共振响应规律具有理论及工程参考价值。

Abstract

Here, the nonlinear principal resonance problem of an electrostatically actuated micro-electromechanical  system (MEMS) 
  oscillator considering fringing effects was qualitatively studied using nonlinear dynamics theory. Firstly, the spatial discretization with differential quadrature method was adopted to obtain the system’s single degree of freedom dynamic equation. Secondly, static bifurcation characteristics of the system were studied using bifurcation theory, and dimensionless critical cubic stiffness, primary pull-in voltage and secondary pull-in voltage were derived and defined. Thirdly, the multi-scale method was used to obtain the frequency response function of the system, and the dimensionless critical voltage for converting soft-hard characteristics of small amplitude vibration frequency response was defined. Finally, by combining dynamic pull-in conditions with the critical control equation for soft-hard conversion, dynamic laws of the system’s main resonance and inter-trap jumps were discussed. It was shown that this study has theoretical and engineering reference value for qualitatively grasping static and dynamic pull-in and main resonance response laws of electrostatically actuated MEMS oscillators.

关键词

微机电系统(MEMS)振子非线性振动 / 分岔 / 吸合 / 边缘效应

Key words

micro-electromechanical  / system (MEMS) oscillator nonlinear vibration / bifurcation / pull-in / fringing effect

引用本文

导出引用
李佰洲1, 韩建鑫1, 2, 黄仪1, 崔良玉1, 2. 考虑边缘效应的静电驱动MEMS振子非线性振动定性研究[J]. 振动与冲击, 2025, 44(1): 10-19
LI Baizhou1, HAN Jianxin1, 2, HUANG Yi1, CUI Liangyu1, 2. Qualitative study on nonlinear vibration of electrostatically actuated MEMS oscillator considering fringing effects[J]. Journal of Vibration and Shock, 2025, 44(1): 10-19

参考文献

[1]WANG X F, HUAN R H, ZHU W Q, et al. Frequency locking in the internal resonance of two electrostatically coupled micro-resonators with frequency ratio 1∶3[J]. Mechanical Systems and Signal Processing, 2021, 146: 106981.
[2]MELNIKOV A, SCHENK H A G, MONSALVE J M, et al. Coulomb-actuated microbeams revisited: experimental and numerical modal decomposition of the saddle-node bifurcation[J]. Microsystems & Nanoengineering, 2021, 7(1): 41.
[3]TUSSET A M, BALTHAZAR J M, ROCHA R T, et al. On suppression of chaotic motion of a nonlinear MEMS oscillator[J]. Nonlinear Dynamics, 2019, 99(1): 537-557.
[4]YU Y P, CHEN L H, WANG Z G, et al. Response analysis of nonlinear free vibration of parallel-plate MEMS actuators: an analytical approximate method[J]. Journal of Vibration Engineering & Technologies, 2020, 8(6): 935-946.
[5]尚慧琳, 文永蓬. 一类静电驱动微结构谐振传感器的吸合不稳定性研究及控制[J]. 振动与冲击, 2013, 32(15): 8-13.
SHANG Huilin, WEN Yongpeng. Pull-in stability of electrostatically actuated MEMS resonant sensor and its control[J]. Journal of Vibration and Shock, 2013, 32(15): 8-13.
[6]ZHANG W M, MENG G. Nonlinear dynamical system of micro-cantilever under combined parametric and forcing excitations in MEMS[J]. Sensors and Actuators, A: Physical, 2005, 119(2): 291-299.
[7]GUTIERREZ A, TORRES P J. Nonautonomous saddle-node bifurcation in a canonical electrostatic MEMS[J]. International of Journal of Bifurcation and Chaos, 2013, 23(5): 1350088.
[8]SHAO S, MASRI K M, YOUNIS M I. The effect of time-delayed feedback controller on an electrically actuated resonator[J]. Nonlinear Dynamics, 2013, 74(1/2): 257-270.
[9]BARCELO J, ROSSELLO J L, BOTA S, et al. Electrostatically actuated microbeam resonators as chaotic signal generators: a practical perspective[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 30(1/2/3): 316-327.
[10]HAN J X, QI H J, JIN G, et al. Mechanical behaviors of electrostatic microresonators with initial offset imperfection: qualitative analysis via time-varying capacitors[J]. Nonlinear Dynamics, 2018, 91(1): 269-295.
[11]HAN J X, ZHANG Q C, WANG W. Static bifurcation and primary resonance analysis of a MEMS resonator actuated by two symmetrical electrodes[J]. Nonlinear Dynamics, 2015, 80(3): 1585-1599.
[12]ZHANG J, FU Y M. Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory[J]. Meccanica, 2012, 47(7): 1649-1658.
[13]TAJADDODIANFAR F, PISHKENARI H N, YAZDI M R H. Prediction of chaos in electrostatically actuated arch micro-nano resonators: analytical approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2016, 30(1/2/3): 182-195.
[14]NAJAR F, NAYFEH A H, ABDEL-RAHMAN E M, et al. Nonlinear analysis of MEMS electrostatic microactuators: primary and secondary resonances of the first mode[J]. Journal of Vibration and Control, 2010, 16(9): 1321-1349.
[15]HAN J X, LI L, JIN G, et al. Qualitative identification of the static pull-in and fundamental frequency of one-electrode MEMS resonators[J]. Micromachines, 2018, 9(12): 9120614.
[16]HAN J X, LI L, JIN G, et al. Nonlinear mechanism of pull-in and snap-through in microbeam due to asymmetric bias voltages[J]. Nonlinear Dynamics, 2020, 102(1): 19-44.
[17]张锦涛, 王昕, 吕小红, 等. Duffing系统共存周期解的稳定性与分岔演化[J]. 噪声与振动控制, 2022, 42(4): 46-51.
ZHANG Jintao, WANG Xin, L Xiaohong, et al. Stability and bifurcation evolution of coexisting periodic solutions of duffing system[J]. Noise and Vibration Control, 2022, 42(4): 46-51.
[18]曹庆杰, WIERCIGROCH M, PAVLOVSKAIA E E. SD振子, SD吸引子及其应用[J]. 振动工程学报, 2007, 20(5): 454-458.
CAO Qingjie, WIERCIGROCH M, PAVLOVSKAIA E E. SD oscillator, the attractor and their applications[J]. Journal of Vibration Engineering, 2007, 20(5): 454-458.
[19]OUAKAD H M. Electrostatic fringing-fields effects on the structural behavior of MEMS shallow arches[J]. Microsystem Technologies, 2016, 24(3): 1391-1399.
[20]NAJAR F, NAYFEH A H, ABDEL-RAHMAN E M, et al. Dynamics and global stability of beam-based electrostatic microactuators[J]. Journal of Vibration and Control, 2010, 16(5): 721-748.
[21]QIN Z H, CHEN Y S. Singular analysis of bifurcation systems with two parameters[J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(8):1019-1026.
[22]HAN J X, JIN G, ZHANG Q C, et al. Dynamic evolution of a primary resonance MEMS resonator under prebuckling pattern[J]. Nonlinear Dynamics, 2018, 93(4): 2357-2378.

PDF(3293 KB)

231

Accesses

0

Citation

Detail

段落导航
相关文章

/