OTPA结合NSGA-Ⅱ算法的产品包装系统优化设计

陆怡宇1, 2, 3, 张元标1, 2, 3, 杨松平1, 2, 3, 聂楚昕1, 2, 3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 102-112.

PDF(3593 KB)
PDF(3593 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 102-112.
振动理论与交叉研究

OTPA结合NSGA-Ⅱ算法的产品包装系统优化设计

  • 陆怡宇1,2,3,张元标*1,2,3,杨松平1,2,3,聂楚昕1,2,3
作者信息 +

Optimization design of product packaging system using OTPA combined with NSGA-Ⅱ algorithm

  • LU Yiyu1,2,3, ZHANG Yuanbiao*1,2,3, YANG Songping1,2,3, NIE Chuxin1,2,3
Author information +
文章历史 +

摘要

利用工况传递路径方法(OTPA, Operational Transfer Path Analysis)分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(NSGA-Ⅱ, Non-dominated Sorting Genetic Algorithm-II)进行包装系统优化设计。实验结果表明,产品关键元件实测振动加速度响应曲线与OTPA方法合成的加速度响应曲线吻合良好,验证了OTPA方法的正确性;通过OTPA方法量化各传递路径的振动贡献量,对比识别出产品包装系统的主要振动传递路径;保持非主要传递路径的缓冲衬垫材料不变,应用NSGA-Ⅱ算法优化产品包装件系统中主要振动传递路径处的缓冲衬垫分配,有效降低了关键元件的加速度响应,减少在振动过程中的能量聚集,促使各传递路径的振动贡献量趋于均衡。实现了以缓冲性能为主导,同时兼顾环保性能与成本的包装系统优化设计,验证了优化方法的有效性,为产品包装系统设计提供参考。

Abstract

Using the Operating Condition Transfer Path Method (OTPA), Operational Transfer Path Analysis is used to analyze the vibration transmission characteristics of product packaging systems under different excitation spectra and vibration levels of random vibration, combined with Non Dominant Sorting Genetic Algorithm (NSGA-II), Non dominated Sorting Genetic Algorithm II for packaging system optimization design. The experimental results show that the measured vibration acceleration response curve of the key components of the product matches well with the acceleration response curve synthesized by the OTPA method, verifying the correctness of the OTPA method; Quantify the vibration contribution of each transmission path through the OTPA method, and compare and identify the main vibration transmission paths of the product packaging system; Keeping the cushioning material of the non main transmission path unchanged, the NSGA-II algorithm is applied to optimize the distribution of cushioning materials at the main vibration transmission path in the product packaging system, effectively reducing the acceleration response of key components, reducing energy accumulation during the vibration process, and promoting the vibration contribution of each transmission path to be balanced. We have achieved an optimized design of packaging systems that prioritizes buffering performance while balancing environmental performance and cost, verifying the effectiveness of the optimization method and providing reference for product packaging system design.

关键词

随机振动 / OTPA / 振动贡献量 / NSGA-Ⅱ / 减振优化

Key words

random vibration / OTPA / vibration contribution / NSGA-II algorithm / vibration reduction optimization

引用本文

导出引用
陆怡宇1, 2, 3, 张元标1, 2, 3, 杨松平1, 2, 3, 聂楚昕1, 2, 3. OTPA结合NSGA-Ⅱ算法的产品包装系统优化设计[J]. 振动与冲击, 2025, 44(1): 102-112
LU Yiyu1, 2, 3, ZHANG Yuanbiao1, 2, 3, YANG Songping1, 2, 3, NIE Chuxin1, 2, 3. Optimization design of product packaging system using OTPA combined with NSGA-Ⅱ algorithm[J]. Journal of Vibration and Shock, 2025, 44(1): 102-112

参考文献

[1]霍银磊, 姬喜龙. 含悬臂梁式易损件及弹性约束的产品跌落冲击分析[J]. 振动与冲击, 2021, 40(21): 283-289.
HUO Yinlei, JI Xilong. Drop shock analysis of products with cantilever beam type vulnerable parts and elastic constraints[J]. Journal of Vibration and Shock, 2021, 40(21): 283-289.
[2]伍瑾, 卢富德, 王彪, 等. 易损件在连续跌落冲击载荷作用下的动力学响应[J]. 振动与冲击, 2023, 42(20): 275-279.
WU Jin, LU Fude, WANG Biao, et al. Dynamic response of vulnerable part under the continuous drop impact loads[J]. Journal of Vibration and Shock, 2023, 42(20): 275-279.
[3]YANG S P, WANG Z W. Acceleration spectrum analysis of hyperbolic tangent package under random excitation[J]. Packaging Technology and Science, 2021, 34(9): 579-587.
[4]YANG S P, LIU Z C. Reliability analysis for product package via probability density function of acceleration random response[J]. Journal of Vibration and Control, 2024, 30(7/8):1841-1854.
[5]杨松平,王志伟. 运输包装随机振动的加速度响应谱分析[J].振动与冲击, 2023, 42(16): 37-46.
YANG Songping, WANG Zhiwei. Acceleration spectrum analysis for transport packaging under random vibration[J]. Journal of Vibration and Shock, 2023, 42(16): 37-46.
[6]WANG Z W, WANG J, ZHANG Y B, et al. Application of the inverse substructure method in the investigation of dynamic characteristics of product transport system[J]. Packaging Technology and Science, 2012, 25(6): 351-362.
[7]王军, 王志伟, 卢立新, 等. 多部件耦合包装系统逆子结构分析一般性理论[J]. 振动与冲击, 2014, 33(7): 58-62.
WANG Jun, WANG Zhiwei, LU Lixin, et al. General theory of inverse substructure analysis for multi-component coupled packaging systems[J]. Journal of Vibration and Shock, 2014, 33(7): 58-62.
[8]WANG J, HONG X, QIAN Y, et al. Inverse sub-structuring method for multi-coordinate coupled product transport system[J]. Packaging Technology and Science, 2014, 27(5): 385-408.
[9]王军. 产品破损评价及其防护包装动力学理论研究[D]. 无锡:江南大学, 2010.
[10]张元标. 产品运输包装系统逆子结构分析方法研究[D]. 珠海:暨南大学, 2014.
[11]WANG J, MENG T Y, LI M Y, et al. A practical estimation of frequency response functions for system decoupling indirectly using a variable cross section rod[J]. Journal of Vibration and Acoustics, 2018, 140: 051019.
[12]HOSOYA N, YAGINUMA S, ONODERA H, et al. Estimation of the auto frequency response function at unexcited points using dummy masses[J]. Journal of Sound and Vibration, 2015, 337: 14-27.
[13]舒俊成, 贺尔铭. 振动传递路径频域分析方法研究进展[J]. 机械科学与技术, 2020, 39(11): 1647-1655.
SHU Juncheng, HE Erming. Review on vibration transfer path analysis methods in frequency domain[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1647-1655.
[14]VAN DER SEIJS M V, DE KLERK D, RIXEN D J. General framework for transfer path analysis: history, theory and classification of techniques[J]. Mechanical Systems and Signal Processing, 2016, 68/69: 217-244.
[15]YE S, HOU L, ZHANG P, et al. Transfer path analysis and its application in low-frequency vibration reduction of steering wheel of a passenger vehicle[J]. Applied Acoustics, 2020, 157: 107021.
[16]芮筱亭,王勋,芮雪.人造系统动力学多元系统传递矩阵法初探[J].科学通报, 2023, 68(25): 3250-3258.
RUI Xiaoting, WANG Xun, RUI Xue. Preliminary exploration on the multi-element system transfer matrix method for artificial system dynamics[J]. Chinese Science Bulletin, 2023, 68(25): 3250-3258.
[17]SHIN T, KIM Y S, AN K, et al. Transfer path analysis of rumbling noise in a passenger car based on in-situ blocked force measurement[J]. Applied Acoustics, 2019, 149: 1-14.
[18]陈俊菲, 张元标, 林聪. 随机振动下产品包装系统传递路径分析[J]. 振动工程学报, 2023, 36(2): 507-516.
CHEN Junfei, ZHANG Yuanbiao, LIN Cong. Transfer path analysis of product packaging system under random vibration[J]. Journal of Vibration Engineering, 2023, 36(2): 507-516.
[19]林聪, 张元标, 陈俊菲, 等. 随机振动下产品包装系统减振优化研究[J]. 振动工程学报, 
2023, 36(2): 507-516.
LIN Cong, ZHANG Yuanbiao, CHEN Junfei, et al. Vibration reduction optimization research of product packaging system under random vibration[J]. Journal of Vibration Engineering, 2023, 36(2): 507-516.
[20]JUNG J D, HONG S Y, SONG J H, et al. A study on interior noise contribution analysis of trains based on OTPA method[J]. Transactions of the Korean Society for Noise and Vibration Engineering, 2016, 26(1): 97-103.
[21]CHENG W, BLAMAUD D, CHU Y, et al. Transfer path analysis and contribution evaluation using SVD-and PCA-based operational transfer path analysis[J]. Shock and Vibration,  2020, 2020: e9673838.
[22]于承宣, 刘忠远, 范强, 等. 基于工况传递路径分析(OTPA)方法的热泵热水器室外机振动噪声分析[J]. 噪声与振动控制, 2021, 41(6): 255-262.
YU Chengxuan, LIU Zhongyuan, FAN Qiang, et al. Vibration and noise analysis of the outdoor units of heat pump water heaters based on OTPA technique[J]. Noise and Vibration Control, 2021, 41(6): 255-262.
[23]何争辉. EPE缓冲材料振动过程数值模拟与实验研究[D]. 天津:天津科技大学, 2022.
[24]包装运输包装件基本试验第23部分:垂直随机振动试验方法:GB/T 485723—2021[S]. 北京:中国标准出版社, 2021.
[25]VERMA S, PANT M, SNASEL V. A comprehensive review on NSGA-Ⅱ for multi-objective combinatorial optimization problems[J]. IEEE Access, 2021, 9: 57757-57791.
[26]包装用缓冲材料静态压缩试验方法: GB/T 8168—2008[S]. 北京:中国标准出版社, 2008.
[27]包装用缓冲材料动态压缩试验方法: GB/T 8167—2008[S]. 北京:中国标准出版社, 2008.
[28]刘林, 王凯丽, 谭海湖, 等. 中国绿色包装材料研究与应用现状[J]. 包装工程, 2016, 37(5): 24-30.
LIU Lin, WANG Kaili, TAN Haihu, et al. Research and application status of green packaging materials in China[J]. Packaging Engineering, 2016, 37(5): 24-30.
[29]吴彤彤, 吴金卓, 王卉, 等. 缓冲包装材料经济性与环境影响评价研究进展[J]. 包装工程, 2021, 42(9): 17-24.
WU Tongtong, WU Jinzhuo, WANG Hui, et al. Research progress on technology economy and environmental impact assessment of buffer packaging materials[J]. Pacakaging Engineering, 2021, 42(9): 17-24.
[30]李世文, 程键, 安亚非, 等. 乙烯-醋酸乙烯共聚物改性研究进展[J]. 高分子通报, 2024, 37(5): 593-602.
LI Shiwen, CHENG Jian, AN Yafei, et al. Research progress on modification of Ethylene ainyl acetate copolymers[J]. Polymer Bulletin, 2024, 37(5): 593-602.
[31]邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7): 93-100.
DENG Xue, LI Jiaming, ZENG Haojian, et al. Analysis and application research of analytic hierarchy process weight calculation method[J]. Mathematics in Practice and Theory, 2012, 42(7): 93-100.

PDF(3593 KB)

Accesses

Citation

Detail

段落导航
相关文章

/