基于多重流形标签传播的滚动轴承故障诊断方法

李灿1, 2, 王广斌1, 2, 赵树标1, 2, 钟志贤1, 曾东3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 121-133.

PDF(3828 KB)
PDF(3828 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 121-133.
故障诊断分析

基于多重流形标签传播的滚动轴承故障诊断方法

  • 李灿1,2,王广斌*1,2,赵树标1,2,钟志贤1,曾东3
作者信息 +

Rolling bearing fault diagnosis method based on multi-manifold label propagation

  • LI Can1,2, WANG Guangbin*1,2, ZHAO Shubiao1,2, ZHONG Zhixian1, ZENG Dong3
Author information +
文章历史 +

摘要

针对当前的无监督域自适应算法应用于滚动轴承故障诊断领域时,源域数据不平衡,且两个域之间存在域偏移,导致故障识别率低的问题,提出了一种基于多重流形标签传播的滚动轴承故障诊断方法,旨在将源域和目标域的数据多重投影到共同的子空间,减少域内以及跨域的差异,同时平衡样本分布,进而提高变工况轴承故障诊断的精度。首先,提出域内局部保持平衡映射方法,将源域和目标域数据映射到一重流形子空间,得到域内对齐后的样本数据,并对源域数据进行平衡处理,得到平衡后的源域数据;然后提出跨域流形结构细化对齐方法,将数据进一步映射到二重共享子空间,得到细化对齐后的样本数据;最后通过动态加权伪标签域适应传播方法,得到准确度高的伪标签。分别在CWRU和自建的轴承数据集上进行故障诊断试验,实验结果表明,所提方法不仅对多故障类型多故障尺寸、复合故障上有着较好的识别能力,且当标签样本稀少时,模型也表现出优秀的诊断效果。

Abstract

In the field of rolling bearing fault diagnosis, current unsupervised domain adaptation algorithms often face challenges due to unbalanced source domain data and domain shifts between the source and target domains, leading to low fault recognition rates. To address these issues, we propose a rolling bearing fault diagnosis method based on multi-manifold label propagation. This method aims to project the data from both the source and target domains into a common subspace, reducing intra-domain and cross-domain differences and balancing the sample distribution. Consequently, this enhances the accuracy of fault diagnosis under variable operating conditions.Firstly, we introduce a locally balanced mapping method within the domain, which maps the source and target domain data into a manifold subspace, resulting in aligned sample data. This step also balances the source domain data. Next, we propose a cross-domain manifold structure refinement alignment method, further mapping the data into a double shared subspace to obtain refined aligned sample data. Finally, we employ a dynamic weighted pseudo-label domain adaptive propagation method to achieve highly accurate pseudo-labels.Fault diagnosis experiments were conducted on both the CWRU and self-built bearing datasets. The experimental results demonstrate that the proposed method not only effectively recognizes multiple fault types, fault sizes, and composite faults but also exhibits excellent diagnostic performance even when labeled samples are scarce.

关键词

多重流形映射 / 轴承故障诊断 / 小样本 / 动态加权伪标签

Key words

multiple manifold mapping / bearing fault diagnosis / small sample / dynamic weighted pseudo label

引用本文

导出引用
李灿1, 2, 王广斌1, 2, 赵树标1, 2, 钟志贤1, 曾东3. 基于多重流形标签传播的滚动轴承故障诊断方法[J]. 振动与冲击, 2025, 44(1): 121-133
LI Can1, 2, WANG Guangbin1, 2, ZHAO Shubiao1, 2, ZHONG Zhixian1, ZENG Dong3. Rolling bearing fault diagnosis method based on multi-manifold label propagation[J]. Journal of Vibration and Shock, 2025, 44(1): 121-133

参考文献

[1] 孙洁娣,赵彬集,温江涛,等.压缩感知字典迁移重构的小样本轴承故障诊断[J].振动与冲击,2024,43(05):62-71+120.
SUN Jie-di, ZHAO Bin-ji, WEN Jiang-tao, et al. Compressive sensing dictionary transfer reconstruction of small sample bearing fault diagnosis [J].Vibration and shock, 2024,43 (05):62-71+120.
[2] 宋立杰,胡天桢,李宝庆,等.基于鲁棒最近邻超圆盘的齿轮箱智能故障诊断[J].湖南大学学报(自然科学版),2022,49(12):20-29.
SONG Li-jie, HU Tian-zhen, LI Bao-qing, et al. Intelligent fault diagnosis of gearbox based on robust nearest neighbor hyperdisk [J].Journal of Hunan University (Natural Science Edition), 2022,49 (12) : 20-29.
[3] Tuerxun, Wumaier, et al. "Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm." Ieee Access 9 (2021): 69307-69315.
[4] Hosseinpour Z, Mohammad, Omid M, et al. "Fault diagnosis of tractor auxiliary gearbox using vibration analysis and random forest classifier." Information Processing in Agriculture 9.1(2022): 60-67.
[5] 侯召国,王华伟,熊明兰,等.基于迁移学习与加权多通道融合的齿轮箱故障诊断[J].振动与冲击,2023,42(09):236-246.
HOU Zhao-guo, WANG Hua-wei, XIONG Ming-lan, et al. Gearbox fault diagnosis based on transfer learning and weighted multi-channel fusion [J].Vibration and shock, 2023,42 (09):236-246.
[6] Abdeltwab, Mahrousa M, Nouby M G. "A Review on Engine Fault Diagnosis through Vibration Analysis." International Journal on Recent Technologies in Mechanical and Electrical Engineering 9.2(2022):01-06.
[7] Saini, Kanika, S D, Vanraj. "Predictive monitoring of incipient faults in rotating machinery: a systematic review from data acquisition to artificial intelligence." Archives of Computational Methods in Engineering 29.6(2022): 4005-4026.
[8] SUN Y, LI S. Bearing fault diagnosis based on optimal convolution neural network[J]. Measurement, 2022, 190: 110702.
[9] 秦国浩,张楷,丁昆,等.动态宽卷积残差网络的轴承故障诊断方法[J].中国机械工程,2023,34(18):2212-2221.
QIN Guo-hao, ZHANG Kai, DING Kun, et al. Bearing fault diagnosis method based on dynamic wide convolution residual network [J].China Mechanical Engineering, 2023,34 (18):2212-2221.
[10] TANG Y, ZHANG C, WU J, et al. Deep Learning-based Bearing Fault Diagnosis Using a Trusted Multi-scale Quadratic Attention-embedded Convolutional Neural Network[J]. IEEE Transactions on Instrumentation and Measurement, 2024.
[11] ZHAO X, GUO H. Rolling bearing fault diagnosis model based on DSCB-NFAM[J]. Measurement Science and Technology, 2023, 35(1): 015029.
[12] 卞文彬,邓艾东,刘东川,等.基于改进深度残差收缩网络的风电机组滚动轴承故障诊断方法[J].机械工程学报,2023,59(12):202-214.
BIAN Wen-bin, DENG Ai-dong, LIU Dong-chuan, et al. Fault diagnosis method of wind turbine rolling bearing based on improved deep residual shrinkage network [J].Journal of Mechanical Engineering, 2023,59 (12): 202-214.
[13] 张龙,胡燕青,赵丽娟,等.多通道信息融合与深度迁移学习的旋转机械故障诊断[J].中国机械工程,2023,34(08):966-975.
ZHANG Long, HU Yan-qing, ZHAO Li-juan, et al. Fault diagnosis of rotating machinery based on multi-channel information fusion and deep transfer learning [J].China Mechanical Engineering, 2023,34 (08):966-975.
[14] 张宏乐, 韩雪华, 史凯, 等. 基于深度迁移学习的提升机主轴故障在线诊断系统研究[J].煤炭工程, 2022,54(07): 61-66.
ZHANG Hong-le, HAN Xue-hua, SHI Kai, et al. Research on online diagnosis system of hoist spindle fault based on deep transfer learning [J]. Coal Engineering, 2022,54(07):61-66.
[15] 陈仁祥, 唐林林, 胡小林, 等. 不同转速下基于深度注意力迁移学习的滚动轴承故障诊断方法[J]. 振动与冲击, 2022,41(12):95-101+195.
CHEN Ren-xiang, TANG Lin lin, HU Xiao-lin, et al. Fault diagnosis method of rolling bearing based on deep attention transfer learning at different rotational speeds [J]. Vibration and Shock, 2022,41(12):95-101+195.
[16] ZOU Yi-sheng, et al. "A novel transfer learning method for bearing fault diagnosis under different working conditions." Measurement 171(2021):108767.
[17] LUO Shu-yang, et al. "Transfer learning based on improved stacked autoencoder for bearing fault diagnosis." Knowledge-Based Systems 256 (2022): 109846.
[18] 兰雨涛, 胡超凡, 金京, 等. 基于迁移成分分析的跨域轴承故障分类方法研究[J].机电工程, 2021,38(05):521-527.
LAN Yu-tao, HU Chao-fan, Jin Jing, et al. Research on cross-domain bearing fault classification method based on migration component analysis[J]. Mechanical and Electrical Engineering, 2021,38(05):521-527.
[19] 陈仁祥, 陈思杨, 胡小林, 等. 源域多样本集成GFK的不同工况下滚动轴承寿命状态识别[J]. 振动工程学报, 2020,33(03):614-621.
CHEN Ren-xiang, CHEN Si-yang, HU Xiao-lin, et al. Recognition of rolling bearing life state under different working conditions with multi-sample integrated GFK in source domain[J]. Chinese Journal of Vibration Engineering, 2020,33(03):614-621.
[20] WANG Jin-dong,FENG Wen-jie,CHEN Yi-qiang,et al. Visual  domain  adaptation  with  manifold  embedded distribution  alignment[C]//2018  ACM  Multimedia Conference in Seoul,July,Korea,2018. ACM,2018402-410.
[21] LONG Ming-sheng,WANG Jian-min,DING Gui-guang,et al. Transfer feature learning with joint distribution adaptation[C]//2013 IEEE International Conference on Computer Vision in Sydney,Australia,December 1-8,2013. NewYork:IEEE,2013:2200-2207.
[22] 张西宁, 余迪, 刘书语. 基于迁移学习的小样本轴承故障诊断方法研究[J].西安交通大学学报, 2021,55(10):30-37.
ZHANG Xi-ning, YU Di, LIU Shu-yu. Research on Small Sample Bearing Fault Diagnosis Method Based on Transfer Learning[J].Journal of Xi'an Jiaotong University, 2021,55(10):30-37.
[23] ZHAO Ke, JIANG Hong-kai, WU Zheng-hong. et al.  A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data[J]. Journal of Intelligent Manufacturing, 2022,33,151–165.
[24] ZHAO S, WANG G, LI X, et al. Fault diagnosis of rolling bearing based on cross-domain divergence alignment and intra-domain distribution alienation[J]. Journal of Vibroengineering, 2023, 25(6): 1124-1140.
[25] WANG G, ZHAO S, CHEN J, et al. A novel compound fault diagnosis method for rolling bearings based on graph label manifold metric transfer[J]. Measurement Science and Technology, 2023, 34(6): 065010.
[26] 温江涛,张鹏程,孙洁娣,等.残差卷积自编码网络无监督迁移轴承故障诊断[J].中国机械工程,2022,33(14):1707-1716.
WEN Jiang-tao, ZHANG Peng-cheng, SUN Jie-di, et al. Unsupervised transfer bearing fault diagnosis based on residual convolutional autoencoder network [J].China Mechanical Engineering, 2022,33(14):1707-1716.
[27] LI J, CHEN E, DING Z, et al. "Maximum density divergence for domain adaptation." IEEE transactions on pattern analysis and machine intelligence 43.11(2020):3918-3930.
[28] HUANG Jun-chu, et al. "Heterogeneous domain adaptation with label and structural consistency." Multimedia Tools and Applications 79.25(2020):17923-17943.
[29] LI Shuang, et al. "Simultaneous semantic alignment network for heterogeneous domain adaptation." Proceedings of the 28th ACM international conference on multimedia. 2020.
[30] Li J, Lu K, Huang Z, et al. "Transfer independently together: A generalized framework for domain adaptation." IEEE transactions on cybernetics 49.6 (2018):2144-2155.
[31] WANG Qian, Breckon T. "Unsupervised domain adaptation via structured prediction based selective pseudo-labeling." Proceedings of the AAAI conference on artificial intelligence. Vol.34.No.04.2020.
[32] Asniar, Nur U M, Kridanto S, SMOTE-LOF for noise identification in imbalanced data classification, Journal of King Saud University - Computer and Information Sciences, Volume 34, Issue 6, Part B, 2022, Pages 3413-3423.
[33] Turlapati, Venkata P K, and Manas R P. “Outlier-SMOTE: A refined oversampling technique for improved detection of COVID-19.” Intelligence-based medicine vol. 3(2020):100023. 
[34] 冷强奎,孙薛梓,孟祥福.基于样本势和噪声进化的不平衡数据过采样方法[J/OL].计算机应用,1-10.http://kns.cnki.net/kcms/detail/51.1307.TP.20231120.1707.006.html.
LENG Qiang-kui, SUN Xue zi, MENG Xiang fu. Unbalanced data oversampling method based on sample potential and noise evolution [J/OL].Computer application, 1-10.http://kns.cnki.net/kcms/detail/51.1307.TP.20231120.1707.006.html.
[35] SHI S, LI J, ZHU D, et al,A hybrid imbalanced classification model based on data density,Information Sciences,Volume 624,2023,Pages 50-67,ISSN 0020-0255.2022.12.046.
[36] WANG G, ZHAO S, ZHONG Z, et al. Research on Shaft Current Damage Identification of Variable Condition Motor Bearings Based on Multiscale Feature Label Propagation and Manifold Metric Transfer[J]. Lubricants, 2023, 11(2): 69.
[37] 尹久,张杰.基于HMFDE和t-SNE的旋转机械故障诊断方法[J/OL].机电工程,1-11.http://kns.cnki.net/kcms/detail/33.1088.TH.20240118.0942.005.html.
YIN Jiu, ZHANG Jie. Rotating machinery fault diagnosis method based on HMFDE and t-SNE [J/OL].Electromechanical engineering, 1-11.http://kns.cnki.net/kcms/detail/33.1088.TH.20240118.0942.005.html.
[38] 王军辉,雷文平,刘华杰等.基于深度动态域适应的轴承故障诊断研究[J].振动与冲击,2023,42(14):245-250.
WANG Jun-hui, LEI Wen-ping, LIU Hua-jie, et al. Research on bearing fault diagnosis based on deep dynamic domain adaptation[J]. Journal of vibration and shock, 2023,42(14):245-250.

PDF(3828 KB)

147

Accesses

0

Citation

Detail

段落导航
相关文章

/