落石冲击下钢混组合梁桥桥面板动力行为及易损性分析

吴昊1, 杨琳珂1, 彭琦2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 177-189.

PDF(6640 KB)
PDF(6640 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 177-189.
冲击与爆炸

落石冲击下钢混组合梁桥桥面板动力行为及易损性分析

  • 吴昊1,杨琳珂1,彭琦*2
作者信息 +

Dynamic behavior and vulnerability analyses of steel-concrete composite beam bridge deck under rockfall impact#br#

  • WU Hao1, YANG Linke1, PENG Qi*2
Author information +
文章历史 +

摘要

针对山区钢混组合梁桥上部结构面临落石冲击的威胁,开展了钢混组合梁桥桥面板动力行为及易损性分析。首先,基于已有冲击试验,提出并验证了适用于落石冲击桥面板的数值仿真分析方法。其次,建立了落石冲击某原型钢混组合梁桥桥面板的精细化有限元模型,分析了桥面板和剪力钉的损伤演化过程、破坏模式和动力响应。进一步,讨论了混凝土强度、纵筋屈服强度、直径和配筋率、横筋配筋率以及配箍率等设计参数对桥面板抗落石冲击性能的敏感性和影响规律。最后,综合考虑桥面板几何与材料特性以及落石冲击荷载的随机性,基于响应面法和蒙特卡罗模拟开展了桥面板的易损性分析。结果表明:提高混凝土强度及配筋率,可有效地增强桥面板抵抗400kJ能级落石冲击的性能;对于所考虑工况,当落石速度在10~25m/s时,桥面板跨中峰值挠度与板厚比值低于0.75。

Abstract

Considering the threat of rockfall impacting superstructure of steel-concrete composite beam bridges in mountainous areas, both the dynamic behavior and vulnerability analysis of bridge panel under rockfall impact were performed. Firstly, based on existing impact test, the numerical simulation approach adopted to rockfall impact bridge panel was proposed and validated. Secondly, the refined finite element (FE) model of a prototype steel-concrete composite beam bridge panel subjected to rockfall impact was established, and the damage evolution process, failure mode and dynamic response of the bridge panel and shear nails were analyzed. Furthermore, the sensitivity and influence tendency of designed parameters of the bridge panel, i.e., concrete strength, yield strength, diameter and ratio of longitudinal reinforcement, transverse reinforcement ratio and stirrup reinforcement ratio, on the impact resistance performance were discussed. Finally, taking into account the randomness of geometry and material characteristics of bridge panel and impact load of rockfall, the vulnerability analysis of bridge panel was conducted based on response surface method and Monte Carlo simulation. The results indicate that improving the concrete strength and reinforcement ratio can effectively enhance the resistance of bridge panel against 400kJ energy level rockfall impact; for the considered impact scenario, in case of the impact velocity between 10~25m/s, the ratio of peak deflection to thickness at the mid span of the bridge panel is less than 0.75.

关键词

落石冲击 / 钢混组合梁桥 / 桥面板 / 动力行为 / 易损性分析

Key words

rockfall impact / steel-concrete composite beam bridge / bridge panel / dynamic behavior / vulnerability analysis

引用本文

导出引用
吴昊1, 杨琳珂1, 彭琦2. 落石冲击下钢混组合梁桥桥面板动力行为及易损性分析[J]. 振动与冲击, 2025, 44(1): 177-189
WU Hao1, YANG Linke1, PENG Qi2. Dynamic behavior and vulnerability analyses of steel-concrete composite beam bridge deck under rockfall impact#br#[J]. Journal of Vibration and Shock, 2025, 44(1): 177-189

参考文献

[1] 重庆市交通行政执法总队. G42沪蓉高速, 庙梁隧道口滑坡, 百吨巨石堵住高速[EB/OL]. https://www.sohu.com/a/245140 897_160023, 2018-08-03.
[2] 酒都播报. 余震造成巨石滚落, 路面被砸出深坑! 硐底大桥再出险情[EB/OL]. https://www.sohu.com/a/322171182_1200 51609, 2019-06-21.
[3] JTG D60-2015. 公路桥涵设计通用规范[S]. 北京: 人民交通出版社, 2015.
[4] TB 10002-2017. 铁路桥涵设计规范[S]. 北京: 中国铁道出版社, 2017.
[5] AASHTO LRFD Bridge Design Specifications[S]. Washington, D.C.: American Association of State Highway and Transportation Officials, 2007.
[6] 顾乡, 赵雷, 余志祥, 等. 落石冲击对山区桥墩的损伤研究[J]. 铁道工程学报, 2016, 33(3): 72-75+98.
GU Xiang, ZHAO Lei, YU Zhixiang, et al. Research on the damage of bridge pier in mountain area under impact of rockfall[J]. Journal of Railway Engineering Society, 2016, 33(3): 72-75+98.
[7] 周晓宇, 马如进, 陈艾荣. 行车落物冲击下钢筋混凝土桥面板的安全性能[J]. 华南理工大学学报(自然科学版), 2018, 46(04): 137-145.
ZHOU Xiaoyu, MA Rujin, CHEN Airong. Safety performance of a bridge deck under impact of a massive falling cargo from passing truck[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(04): 137-145.
[8] 李盼. 竖向冲击下预应力混凝土空心板桥损伤分析[J]. 交通科技, 2020(04): 15-18.
LI Pan. Damage analysis of prestressed concrete hollow slab bridge under vertical impact[J]. Transportation Science & Technology, 2020(04): 15-18.
[9] 康俊涛, 章豪. 落石冲击下钢混组合梁桥上部结构动力响应分析[J]. 中山大学学报(自然科学版), 2021, 60(6): 36-42.
KANG Juntao, ZHANG Hao. Analysis of dynamic response of steel-concrete composite beam bridge superstructure under rockfall impact[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (Natural Science Edition), 2021, 60(6): 36-42.
[10] 刘占辉, 呼瑞杰, 姚昌荣, 等. 桥梁撞击问题2019年度研究进展[J]. 土木与环境工程学报, 2020, 42(5): 235-246.
LIU Zhanhui, HU Ruijie, YAO Changrong, et al. State-of-the-art review of bridge impact research in 2019[J]. Journal of Civil and Environmental Engineering, 2020, 42(5): 235-246.
[11] 刘占辉, 卢治谋, 张锐, 等. 桥梁撞击问题2020年度研究进展[J]. 土木与环境工程学报, 2021, 43(S1): 242-251.
LIU Zhanhui, LU Zhimou, ZHANG Rui, et al. State-of-the-art review of bridge impact research in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 242-251.
[12] CAO Z Y, LIU Z H, XU G J, et al. Risk assessment and prevention for typical railway bridge pier under rockfall impact[J]. Structures, 2024, 62: 106178.
[13] ZHANG J F, WANG R, HAN W S, et al. A comprehensive approach for bridge performance evaluation under rockfall impact integrated with geological hazard analysis[J]. Engineering Failure Analysis, 2022, 141.
[14] LI F, LIU Y K, YANG J. Durability assessment method of hollow thin-walled bridge piers under rockfall impact based on damage response surface[J]. Sustainability, 2022, 14(19): 12196-12196.
[15] ZHONG H Q, HAO C R, YU Z X, et al. Damage assessment of RC bridge piers under rockfall impact and evaluation of a steel-sand protective structure[J]. Structures, 2023, 47: 607-624.
[16] XIE R H, FAN W, LIU B, et al. Dynamic behavior and vulnerability analysis of bridge columns with different cross-sectional shapes under rockfall impacts[J]. Structures, 2020, 26: 471-476.
[17] ZINEDDIN M, KRAUTHAMMER T. Dynamic response and behavior of reinforced concrete slabs under impact loading[J]. International Journal of Impact Engineering, 2007, 34(9): 1517-1534.
[18] SAID A I, MABROOK M E. Experimental investigation on reinforced concrete slabs under high-mass low velocity repeated impact loads[J]. Structures, 2022, 35: 314-324.
[19] 王明洋, 宋春明, 王德荣, 等. 钢筋混凝土板在低速冲击下的计算方法[J]. 兵工学报, 2004, 25(6): 672-678.
WANG Mingyang, SONG Chunming, WANG Derong, et al. Calculational Methods of Reinforced Concrete Slabs to Low Velocity Impact[J]. Acta Armamentarii, 2004, 25(6): 672-678.
[20] BERTRAND D, KASSEM F, DELHOMME F, et al. Reliability analysis of an RC member impacted by a rockfall using a nonlinear SDOF model[J]. Engineering Structures, 2015, 89: 93-102.
[21] YU X H, XIAO Y, LI B. Evaluation of failure probability for RC slabs subjected to low-velocity impacts[J]. Magazine of Concrete Research, 2018, 72(1): 1-69.
[22] YAN P, ZHANG J H, FANG Q, et al. Numerical simulation of the effects of falling rock’s shape and impact pose on impact force and response of RC slabs[J]. Construction and Building Materials, 2018, 160: 497-504.
[23] MURAISHI H, SAMIZO M, SUGIYAMA T. Development of a Flexible Low-Energy Rockfall Protection Fence[J]. Quarterly Report of RTRI, 2005, 46(3): 161-166.
[24] LSTC. LS-DYNA keyword user's manual[M]. California: Livermore Software Technology Corporation (LSTC), 2013.
[25] VEPSA A, SAARENHEIMO A, RAMBACH J M, et al. IRIS_2010 Part II: Experimental Data[C]. Transaction of 21st International Conference on Structural Mechanics in Reactor Technology. New Delhi, India: 2011.
[26] LI Z C, JIA P C, JIA J Y, et al. Impact-resistant design of RC slabs in nuclear power plant buildings[J]. Nuclear Engineering and Technology, 2022, 54(10): 3745-3765.
[27] 周晓宇, 马如进, 陈艾荣. 钢筋混凝土柱式墩落石冲击抗剪性能可靠性分析[J]. 振动与冲击, 2017, 36(07): 262-270.
ZHOU Xiaoyu, MA Rujin, CHEN Airong. Anti-shear reliability analysis for a reinforced concrete column subjected to rockfall impact[J]. Journal of Vibration and Shock, 2017, 36(07): 262-270.
[28] 陈天黎, 吴昊, 方秦. 驳船撞击作用下双柱式桥梁的动力行为分析[J]. 振动与冲击, 2023, 42(20): 158-171.
CHEN Tianli, WU Hao, FANG Qin. Dynamic behaviors of double-column RC bridge under barge impact[J]. Journal of Vibration and Shock, 2023, 42(20): 158-171.
[29] 尹泽豪, 贾鹏程, 吴昊. 低速冲击下RC梁的冲切破坏判据[J]. 建筑结构学报, 2024, 45(01): 36-46.
YIN Zehao, JIA Pengcheng, WU Hao. Criterion of punching shear failure for RC beams under low-velocity impact[J]. Journal of Building Structures, 2024, 45(01): 36-46.
[30] 工程动画定制. 抚河大桥钢混组合梁施工动画[EB/OL]. https://www.bilibili.com/video/BV1pJ411x7yD/?spm_id_from=333.999.0.0&vd_source=5b52ddcb2a63f2994f4824c3d3eab198, 2019-12-24.
[31] 吴昊, 肖方胜, 李瑞文. 落石撞击下双柱式RC梁桥的倒塌破坏分析[J]. 中国公路学报, 2024, 37(05): 94-107.
WU Hao, XIAO Fangsheng, LI Ruiwen. Collapse Analysis of double-column RC girder bridge under rockfall impact[J] China Journal of Highway and Transport, 2024, 37(05): 94-107.
[32] PENG Q, WU H, JIA P C, et al. Numerical studies on rebar-concrete interactions of RC members under impact and explosion[J]. Structures, 2023, 47: 63-80.
[33] 戴镇潮. 混凝土强度的标准差和变异系数[J]. 混凝土与水泥制品, 1999, (06): 7-10.
DAI Zhenchao. Research on standard deviation and coefficient of variation for concrete strength[J]. China Concrete and Cement Products, 1999, (06): 7-10.
[34] 蒋京慧. 近场爆炸荷载作用下高速铁路桥梁的易损性分析与可靠性评估[D]. 北京: 北京交通大学, 2021.
[35] GB/T 1499.2-2018. 钢筋混凝土用钢 第2部分: 热轧带肋钢筋[S]. 北京: 中国标准出版社, 2018.
[36] GB 50204-2015. 混凝土结构工程施工质量验收规范[S]. 北京: 中国建筑工业出版社, 2014.

PDF(6640 KB)

148

Accesses

0

Citation

Detail

段落导航
相关文章

/