金属/碳纤维混合材料车身构件压溃性能及耐撞性设计

梅轩1, 赵众豪1, 周冠豪 2, 任浩乾1, 曹悉奥1, 朱国华1, 王振1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 198-211.

PDF(4547 KB)
PDF(4547 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 198-211.
冲击与爆炸

金属/碳纤维混合材料车身构件压溃性能及耐撞性设计

  • 梅轩1,赵众豪1,周冠豪 2,任浩乾1,曹悉奥1,朱国华*1,王振1
作者信息 +

Crushing characteristics and crashworthiness design of metal/CFRP hybrid material vehicle body components

  • MEI Xuan1, ZHAO Zhonghao1, ZHOU Guanhao2, REN Haoqian1, CAO Xi’ao1, ZHU Guohua*1, WANG Zhen1
Author information +
文章历史 +

摘要

铝合金/碳纤维混合材料是由低成本、高延展性的铝合金与低密度、高强度的碳纤维增强树脂基复合材料(Carbon fibers reinforced plastics,CFRP)组合而成。将该混合材料应用至车身结构设计中,能够有效应对轻量化、材料成本及碰撞安全带来的多重压力,并能够进一步拓展车身结构设计的思路和空间。本文将单向碳纤维增强复合材料(UD-CFRP)、机织碳纤维增强复合材料(WF-CFRP)与方形铝合金薄壁管组合,制备了一系列不同规格的混合材料薄壁结构,并开展轴向准静态压溃实验,揭示了混合材料薄壁结构的耐撞性能。基于实验结果,分析碳纤维增强方式、铺层数以及组分材料相对位置等因素对混合材料薄壁结构耐撞性能的影响,其中CFRP/AL混合材料薄壁结构展现出优异的压溃吸能特性。此外,通过建立有限元模型将UD/AL混合材料薄壁结构引入汽车前纵梁轻量化设计中。最后,采用多目标离散优化算法对UD/AL混合材料前纵梁的铝合金厚度以及碳纤维铺层角度进行优化设计。优化结果表明,与初始设计方案相比,优化后的UD/AL混合材料前纵梁减重34.26%,且比吸能提高42.05%。

Abstract

The Metal/CFRP hybrid materials combine low density and high strength CFRP (carbon fiber reinforced composite plastics) materials with low cost and high toughness metallic materials, which are capable to overcome the challenges of weight reduction, material cost, crash safety and bring more ideas and space for the body structure design in automotive industry. In this work, unidirectional CFRP (UD-CFRP) and woven CFRP (WF-CFRP) is combined with square aluminum alloy thin-walled tubes to prepare a series of composite thin-walled structures with different configurations. Axial quasi-static crushing tests are carried out to reveal the crashworthiness for all specimens. Based on the test results, the effects of fiber architecture, layer number and relative position of constituent parts on the crashworthiness are analyzed, and the CFRP/AL hybrid tubes shows excellent energy-absorbing characteristics. In addition, several FE models of front longitudinal beam are developed to further explore the lightweight effects of UD/AL hybrid materials in front longitudinal beam design. Finally, the aluminum tubal wall thickness and the CFRP ply orientation of UD/AL hybrid front longitudinal beam are designed by multi-objective discrete optimization method. As a result, the weight of the optimal design reduced by 34.26%, and the specific energy-absorbing (Ws) improved by 42.05%, compared with the initial design. 

关键词

铝合金/碳纤维混合材料 / 耐撞性设计 / 多目标离散优化设计

Key words

Metal/CFRP hybrid materials / crashworthiness design / multi-objective discrete optimization.

引用本文

导出引用
梅轩1, 赵众豪1, 周冠豪 2, 任浩乾1, 曹悉奥1, 朱国华1, 王振1. 金属/碳纤维混合材料车身构件压溃性能及耐撞性设计[J]. 振动与冲击, 2025, 44(1): 198-211
MEI Xuan1, ZHAO Zhonghao1, ZHOU Guanhao2, REN Haoqian1, CAO Xi’ao1, ZHU Guohua1, WANG Zhen1. Crushing characteristics and crashworthiness design of metal/CFRP hybrid material vehicle body components[J]. Journal of Vibration and Shock, 2025, 44(1): 198-211

参考文献

[1] 朱国华,成艾国,王振,等. 电动车轻量化复合材料车身骨架多尺度分析[J]. 机械工程学报,2016, 52(6):145-152.
ZHU Guohua, CHENG Aiguo, WANG Zhen, et al. Analysis of Lightweight Composite Body Structure for Electrical Vehicle Using the Multiscale Approach [J]. Journal of Mechanical Engineering, 2016, 52(6): 145-152(in Chinese).
[2] Jiang H, Ren Y, Liu Z, et al. Microscale finite element analysis for predicting effects of air voids on mechanical properties of single fiber bundle in composites[J]. Journal of Material Science,2019,54:1363-81.
[3] Vaidya UK. Design and manufacture of woven reinforced glass/polypropylene composites for mass transit floor structure[J]. Journal of Composite Materials,2004,38(21): 1949-71.
[4] Jiang H, Ren Y, Zhang S, et al. Damage and perforation resistance behaviors induced by projectile impact load on bonding-patch repaired and scarf-patch repaired composite laminates[J]. International Journal Damage Mechanics 2018,28(4):502-37.
[5] Zhu G, Wang Z, Cheng A, et al. Design optimization of composite bumper beam with variable cross-sections for automotive vehicle[J]. International Journal of Crashworthiness 2017:1-12.
[6] ChiuL.N.S., FalzonB.G., Ruan D, et al. Crush responses of composite cylinder under quasi-static and dynamic loading[J]. Composite Structures,2015,131:90-98.
[7] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial com-pressive loading: Experimental[J]. Composite Structures,2005,69(4):407-420.
[8] Li S, Xiao G, Sun G, et al. On lateral compression of circular aluminum, CFRP and GFRP tubes[J]. Composite Structures, 2020,232:111534.
[9] Kim H C, Shin D K, Lee J J, et al. Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application[J]. Composite Structures,2014,112:1-10.
[10] Meredith J, Bilson E, Powe R, et al. A performance versus cost analysis of prepreg carbon fibre epoxy energy absorption structures[J]. Composite Structures,2015,124:206-213.
[11] 朱国华.金属/碳纤维混合材料薄壁结构耐撞性研究[D]. 长沙:湖南大学机械与运载工程学院,2018.
ZHU Guohua. Study on Crashworthiness of metal / carbon fiber composite thin wall structure[D]. Changsha:College of mechanical and transportation engineering, Hunan University, 2018(in Chinese).
[12] Bambach MR, Jama H H, Elchalakani M. Axial capacity and design of thin-walled steel SHS strengthened with CFRP[J]. Thin Walled Structures,2009,47(10):1112-1121.
[13] Bambach MR, Elchalakani M, Zhao XL. Composite steel–CFRP SHS tubes under axial impact[J]. Composite Structures,2009,87(3):282-292.
[14] Kim H C, Shin D K, Lee J J. Characteristics of aluminum/CFRP short square hollow section beam under transverse quasi-static loading[J]. Composites Part B Engineering,2013,51:345-358.
[15] Reuter C, TrösterT. Crashworthiness and numerical simulation of hybrid aluminium-CFRP tubes under axial impact[J]. Thin-Walled structures,2017,117:1-9.
[16] Zhu G, Liao J, Sun G, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J]. International Journal of Impact Engineering,2020, 141:103509.
[17] Zhu G, Sun G, Yu H, et al. Energy-absorbing of metal, composite and metal/composite hybrid structures under oblique crushing loading[J]. International Journal of Mechanical Sciences,2018,135:458-483.
[18] Zhang Y,Lu M,Sun G,et al. On functionally graded composite structures for crashworthiness. Composite Structures,2015,132:393-405.
[19] Li X,Yan Y,Guo L,et al. Effect of strain rate on the mechanical properties of carbon/epoxy composites under quasi-static and dynamic loadings[J]. Polymer Testing,2016, 52:254-264.
[20] ACAR E, GULER M A, GEREKER B, et a1.Multi-objective crashworthiness optimization of tapered thin-walled tubes with axisymmetric indentations[J]. Thin-Walled Structures, 2011,49(1):94-105.
[21] Langseth M , Hopperstad O S . Static and dynamic axial crushing of square thin-walled alum inium extrusions[J]. International Journal of Impact Engineering,1996, 18(7-8):949-968.
[22] Wierzbicki T , Abramowicz W . On the Crushing Mechanics of Thin-Walled Structures[J]. Jou rnal of Applied Mechanics, 1983,50(4a):727-734.
[23] Esnaola A,Elguezabal B,Aurrekoetxea J,et al. Optimization of the semi-hexagonal geometry of a composite crush structure by finite element analysis. Composites Part B Engineering,2016,93:56-66.
[24] Sun G, Chen D, Huo X, et al. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels[J]. Composite Structures,2018, 184:110-124.
[25] Z. Hashin, Failure criteria for unidirectional fiber composites[J]. Journal of Apply Mechanics,47,329 (1980).
[26] Faggiani A, Falzon B G. Predicting low-velocity impact damage on a stiffened composite panel[J], Composites Part A: Applied Science & Manufacturing,2010,41(6):737-749.
[27] Zhu G, Sun G, Li G, et al. Modeling for CFRP structures subjected to quasi-static crushing[J], Composite Structures, 2018,184:41-55.
[28] 陈吉清,周鑫美,饶建强,等. 汽车前纵梁薄壁结构碰撞吸能特性及其优化的研究[J]. 汽车工程,2010,32(6):486-492.
CHEN Jiqing,ZHOU Xinmei,RAO Jianqiang, et al. A Research on the Energy Absorption Characteristics and Optimization of Thin-walled Structure of Vehicle Front Rail [J]. Automotive Engineering, 2010, 32(6): 486-492 (in Chinese).
[29] Lee KH, Yi JW, Park JS, Park GJ. An optimization algorithm using orthogonal arrays in discrete design space for structures[J]. Finite Elements in Analysis & Design,2003, 40:121-35.
[30] Chen S and Wang D. Optimization of Vehicle Ride Comfort and Controllability Using Grey Relational Analysis. Journal of Grey System,2011,23(4):369-380.
[31] Zhao X, Zhu G, Zhou C, et al. Crashworthiness Analysis and Design of Composite Tapered Tubes under Multiple Load Cases[J]. Composite Structures,2019,222:110920.
[32] 张慧乐. 不确定性优化方法研究及其在TRB车身结构设计中的应用[D]. 长沙:湖南大学机械与运载工程学院,2018.
ZHANG Huile. Research on Uncertainty Optimization Method and Its Application in Design of Automotive Body Structure of Tailor Rolled Blank [D]. Changsha:College of mechanical and transportation engineering, Hunan University,2018(in Chinese).

PDF(4547 KB)

Accesses

Citation

Detail

段落导航
相关文章

/