极端条件下高速铁路典型轮轨周期性磨耗相互作用探讨

崔晓璐1, 王仕琦1, 卜涵1, 徐晓天1, 赵晓波2, 张富贵2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 20-29.

PDF(4410 KB)
PDF(4410 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 20-29.
振动理论与交叉研究

极端条件下高速铁路典型轮轨周期性磨耗相互作用探讨

  • 崔晓璐*1,王仕琦1,卜涵1,徐晓天1,赵晓波2,张富贵2

作者信息 +

Interaction of typical wheel-rail periodic wears of high-speed railway under extreme condition

  • CUI Xiaolu*1, WANG Shiqi1, BU Han1, XU Xiaotian1, ZHAO Xiaobo2, ZHANG Fugui2
Author information +
文章历史 +

摘要

车轮多边形和钢轨波磨作为高速铁路典型轮轨周期性磨耗均会加剧轮轨振动,影响行车安全。为探究极端条件下当车轮多边形和钢轨波磨共存时的相互作用:首先,考虑高速铁路典型轮轨周期性磨耗建立了轮轨系统的有限元模型,探究了具有频率相关性的轮轨周期性磨耗竞争机制;然后,对比研究了具有频率相关性的轮轨周期性磨耗同/异相位接触时的轮轨摩擦耦合振动特性;最后,研究了具有频率无关性的轮轨周期性磨耗相互作用时的轮轨摩擦耦合振动特性。研究发现:在具有频率相关性的车轮多边形和钢轨波磨共存时的极端条件下轮轨系统最不稳定;具有频率相关性的轮轨周期性磨耗处于同相位时会加剧轮轨系统的不稳定,且同/异相位之间轮轨摩擦耦合振动的差距会随着波深的增加而增大;具有频率无关性的轮轨周期性磨耗的振动频率越接近对轮轨系统稳定性的影响越大。

Abstract

The wheel polygon and rail corrugation as typical wheel-rail periodic wear of high-speed railway, aggravate wheel-rail vibration and affect driving safety. In order to explore the interaction under extreme conditions when wheel polygon and rail corrugation coexist, firstly, considering wheel-rail periodic wear of high-speed railway, the finite element model of wheel-rail system is established, and the frequency-dependent wheel-rail periodic wear competition mechanism is explored. Then, from the perspective of frequency-dependent wheel-rail periodic wears, the wheel-rail friction coupling vibration characteristics of wheel-rail periodic wears in the same/different phase contact are compared. Finally, from the perspective of frequency-independent wheel-rail periodic wears, the wheel-rail friction coupling vibration characteristics of the interaction of wheel-rail periodic wear are studied. Results show that under the extreme conditions of the coexistence of frequency-dependent wheel polygon and rail corrugation, the wheel-rail system is the most unstable. The instability of the wheel-rail system will be aggravated when the frequency-dependent wheel-rail periodic wear are in the same phase, and with the increase of wave depth, the difference in wheel-rail friction coupling vibration between the same phase and different phase will be increased. the closer the frequency-independent periodic wear frequency of wheel-rail is, the more obvious the influence on the stability of wheel-rail system is.

关键词

车轮多边形 / 钢轨波磨 / 摩擦耦合振动 / 同/异相位 / 频率相关性

Key words

wheel polygon / rail corrugation / friction coupling vibration / same/different phase / frequency correlation

引用本文

导出引用
崔晓璐1, 王仕琦1, 卜涵1, 徐晓天1, 赵晓波2, 张富贵2. 极端条件下高速铁路典型轮轨周期性磨耗相互作用探讨[J]. 振动与冲击, 2025, 44(1): 20-29
CUI Xiaolu1, WANG Shiqi1, BU Han1, XU Xiaotian1, ZHAO Xiaobo2, ZHANG Fugui2. Interaction of typical wheel-rail periodic wears of high-speed railway under extreme condition[J]. Journal of Vibration and Shock, 2025, 44(1): 20-29

参考文献

[1]金学松,吴越,梁树林,等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14.
JIN Xuesong, WU Yue, LIANG Shulin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14.
[2]朱海燕,袁遥,肖乾,等. 钢轨波磨研究进展[J]. 交通运输工程学报, 2021, 21(3): 110-133.
ZHU Haiyan, YUAN Yao, XIAO Qian, et al. Research progress on rail corrugation[J]. Chinese Journal of Transport Engineering, 2021, 21(3): 110-133.
[3]BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 219(3): 151-175.
[4]OOSTERMEIJER K H. Review on short pitch rail corrugation studies[J]. Wear, 2008, 265(9/10): 1231-1237.
[5]WU H, WU P B, LI F S, et al. Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm[J]. Engineering Failure Analysis, 2019, 100: 351-364.
[6]WANG B J, XIE S Q, JIANG C Y, et al. An investigation into the fatigue failure of metro vehicle bogie frame[J]. Engineering Failure Analysis, 2020, 118: 104922.
[7]周世祺,崔晓璐,杨冰. 高速铁路钢轨波磨高发区段弹条断裂机理研究[J]. 振动与冲击, 2023, 42(23): 267-275.
ZHOU Shiqi, CUI Xiaolu, YANG Bing.  Fracture mechanism of elastic bar in high-incidence section of rail corrugation of high-speed railway[J]. Journal of Vibration and Shock, 2023, 42(23): 267-275.
[8]陶功权,温泽峰,金学松. 铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展[J]. 机械工程学报, 2021, 57(6): 106-120.
TAO Gongquan, WEN Zefeng, JIN Xuesong. Advances in formation mechanism and mitigation measures of out-of-round railway vehicle wheels[J]. Journal of Mechanical Engineering, 2021, 57(6): 106-120.
[9]BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 1997, 24(4): 435-442.
[10]STAS'KIEWICZ T, FIRLIK B. Out-of-round tram wheels-current state and measurements[J]. Archives of Transport, 2018, 45(1): 83-93.
[11]马卫华,罗世辉,宋荣荣. 地铁车辆车轮多边形化形成原因分析[J]. 机械工程学报, 2012, 48(24): 106-111.
MA Weihua, LUO Shihui, SONG Rongrong. Analyses of the form reason of wheel polygonization of subway vehicle[J]. Journal of Mechanical Engineering, 2012, 48(24): 106-111.
[12]丁昊昊,朱庭锋,黄金伟,等. 不同接触参数下车轮多边形形成及发展试验研究[J]. 机械工程学报, 2023, 59(15): 185-196.
DING Haohao, ZHU Tingfeng, HUANG Jinwei, et al. Experimental study on the formation and evolution of wheel polygon under different contact parameters[J]. Journal of Mechanical Engineering, 2023, 59(15): 185-196.
[13]陈光雄,崔晓璐,王科. 高速列车车轮踏面非圆磨耗机理[J]. 西南交通大学学报, 2016, 51(2): 244-250.
CHEN Guangxiong, CUI Xiaolu, WANG Ke. Generation mechanism for plolygonalization of wheel treads of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 244-250.
[14]NIELSEN J C O, LUNDEN R, JOHANSSON A. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces[J]. Vehicle System Dynamics, 2003, 40(1/2/3): 3-54.
[15]金学松,李霞,李伟,等. 铁路钢轨波浪形磨损研究进展[J]. 西南交通大学学报, 2016, 51(2): 264-273.
JIN Xuesong, LI Xia, LI Wei, et al. Research progress on rail corrugation [J]. Journal of Southwest Jiaotong University, 2016, 51(2): 264-273.
[16]陈光雄,钱韦吉,莫继良, 等.轮轨摩擦自激振动引起小半径曲线钢轨波磨的瞬态动力学[J].机械工程学报, 2014, 50(9): 71-76.
CHEN Guangxiong, QIAN Weiji, MO Jiliang, et al. A transient dynamics study on wear-type rail corrugation on a tight curve due to the friction-induced self-excited vibration of a wheelset-track system[J]. Journal of Mechanical Engineering, 2014, 50(9): 71-76.
[17]崔晓璐,尹越,徐佳,等. 山地城市地铁牵引与制动工况下钢轨波磨成因对比研究[J]. 表面技术, 
2024, 53(3): 152-161.
CUI Xiaolu, YIN Yue, XU Jia, et al. Comparative study on causes of rail corrugation under traction and braking conditions in a mountain city metro[J]. Surface Technology, 2024, 53(3): 152-161.
[18]王志强,雷震宇. 基于瞬态接触特性的科隆蛋扣件轨道波磨形成机理[J]. 清华大学学报(自然科学版), 2023, 63(11): 1844-1855.
WANG Zhiqiang, LEI Zhenyu. Mechanism of corrugation on the track with Cologne egg fasteners based on transient contact characteristics[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(11): 1844-1855.
[19]李智恒,闫正,李抒效,等.钢轨波磨对高速车辆-道岔系统动力性能的影响[J]. 中南大学学报(自然科学版), 2023, 54(11): 4596-4609.
LI Zhiheng, YAN Zheng, LI Shuxiao, et al. Influence of rail corrugation on dynamic performance of high-speed vehicle-turnout system[J]. Journal of Central South University(Science and Technology), 2023, 54(11): 4596-4609.
[20]XU X T, CUI X L, XU J, et al. Study on the interaction between wheel polygon and rail corrugation in high-speed railways[J]. Materials, 2022,15(24): 8765(1-13).
[21]ZHU Q, CHEN G X, KANG X, et al. Effect of wheel structure on friction-induced wheel polygonal wear of high-speed train[J]. Tribology Transactions, 2021, 64(4): 606-615.
[22]ROBLES R, CORREA N, VADILLO E G, et al. Predicting rail corrugation in a real line by means of a fast non-linear vertical and lateral model[J]. Wear, 2023, 524: 204896.
[23]赵晓男,陈光雄,崔晓璐,等. 高速铁路车轮多边形磨耗的形成机理及影响因素探究[J]. 表面技术, 2018, 47(8): 8-13.
ZHAO Xiaonan, CHEN Guangxiong, CUI Xiaolu, et al. Formation mechanism and influencing factors of the polygonal wear of high-speed train wheels[J]. Surface Technology, 2018, 47(8): 8-13.
[24]WU B W, QIAO Q F, CHEN G X, et al. Effect of the unstable vibration of the disc brake system of high-speed trains on wheel polygonalization[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(1): 80-95.
[25]刘国云,曾京,张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击, 2019, 38(6): 137-143.
LIU Guoyun, ZENG Jing,ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances[J]. Journal of Vibration and Shock, 2019, 38(6): 137-143.
[26]康熙,陈光雄,杨普淼,等. 高速铁路车轮偏心磨耗的形成机理与发展规律[J]. 交通运输工程学报, 2022, 22(1): 168-176.
KANG Xi, CHEN Guangxiong, YANG Pumiao, et al. Formation mechanism and progression pattern of eccentric wear of high-speed train wheels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 168-176.
[27]ZHAI W M, JIN X S, WEN Z F, et al. Wear problems of high-speed wheel/rail systems: observations, causes, and countermeasures in China[J]. Applied Mechanics Reviews, 2020, 72(6): 060801.
[28]宋志坤,岳仁法,胡晓依,等.车轮多边形对车辆振动及轮轨力的影响[J].北京交通大学学报, 2017, 41(6): 88-93.
SONG Zhikun, YUE Renfa, HU Xiaoyi, et al. Influence of wheel polygon on vehicle vibration and wheel/rail force[J].Journal of Beijing Jiaotong University, 2017, 41(6): 88-93.
[29]WANG K Y, LIU P F, ZHAI W M, et al. Wheel/rail dynamic interaction due to excitation of rail corrugation in high-speed railway[J]. Science China Technological Sciences, 2015, 58: 226-235.

PDF(4410 KB)

Accesses

Citation

Detail

段落导航
相关文章

/