基于主成分方法研究钢纤维混凝土劈裂破坏的损伤机制

李涛1, 任会兰1, 宁建国1, 宋水舟2, 檀日晶1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 221-231.

PDF(4353 KB)
PDF(4353 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 221-231.
土木工程

基于主成分方法研究钢纤维混凝土劈裂破坏的损伤机制

  • 李涛1,任会兰*1,宁建国1,宋水舟2,檀日晶1
作者信息 +

Damage mechanism of splitting failure of steel fiber-reinforced concrete based on PCA

  • LI Tao1, REN Huilan*1, NING Jianguo1, SONG Shuizhou2, TAN Rijing1
Author information +
文章历史 +

摘要

研究钢纤维混凝土劈裂破坏的细观损伤机制,对在役钢纤维混凝土结构的健康检测具有重要意义。通过多通道声发射系统,采集混凝土和钢纤维混凝土试件(钢纤维含量分别为15和45 kg/m3)劈裂破坏过程中的声发射信号,并结合主成分分析法和k-means聚类算法,对混凝土和钢纤维混凝土的损伤特征进行分析。结果表明,钢纤维的加入抑制了混凝土中裂纹扩展,有效地改善了混凝土的峰后韧性;声发射计数和能量参数变化特征反映了钢纤维混凝土试件宏观变形、破坏的细观损伤演化过程。最后,识别出了钢纤维混凝土中砂浆基体开裂和钢纤维拉拔的两种损伤机制。与砂浆基体开裂相比,钢纤维拉拔产生的声发射信号具有计数高、幅值高、能量强和持续时间长的特征。

Abstract

The study of meso-damage evolution in steel fiber concrete is important for the health inspection of in-service steel fiber concrete structures. A multi-channel acoustic emission system was used to collect acoustic emission signals from concrete and steel-fiber concrete specimens (steel fiber content of 15 and 45 kg/m3, respectively.) during splitting tests. Then, the damage characteristics of concrete and steel fiber concrete are analyzed by combining principal component analysis and k-means clustering algorithm. Research showed that steel fiber inhibits the propagation of cracks in concrete and effectively improve the post-peak toughness of concrete. The acoustic emission characteristics parameter of counts and energy changes reflect the meso-damage evolution process of macroscopic deformation and failure in steel fiber concrete. Finally, two damage mechanisms are identified for mortar matrix cracking and steel fiber pullout in steel fiber concrete. Compared with mortar matrix cracking, the acoustic emission signals generated by steel fiber pull-out behaviors have the characteristics of high count, high amplitude, strong energy, and long duration.

关键词

钢纤维混凝土 / 声发射技术 / 主成分分析法 / k-means聚类

Key words

steel fiber-reinforced concrete / acoustic emission / principal component analysis / k-means 

引用本文

导出引用
李涛1, 任会兰1, 宁建国1, 宋水舟2, 檀日晶1. 基于主成分方法研究钢纤维混凝土劈裂破坏的损伤机制[J]. 振动与冲击, 2025, 44(1): 221-231
LI Tao1, REN Huilan1, NING Jianguo1, SONG Shuizhou2, TAN Rijing1. Damage mechanism of splitting failure of steel fiber-reinforced concrete based on PCA[J]. Journal of Vibration and Shock, 2025, 44(1): 221-231

参考文献

[1] C. YIXIN, Z. JIANYE, M. JICHENG, et al.. Tensile strength and fracture toughness of steel fiber reinforced concrete measured from small notched beams[J]. Case Studies in Construction Materials, 2022, 17.
[2] M. HASSAN.K. WILLE. Direct tensile behavior of steel fiber reinforced ultra-high performance concrete at high strain rates using modified split Hopkinson tension bar [J]. Composites Part B: Engineering, 2022, 246.
[3] D. SHEN, X. LIU, Q. LI, et al.. Early-age behavior and cracking resistance of high-strength concrete reinforced with Dramix 3D steel fiber [J]. Construction and Building Materials, 2019, 196: 307-316.
[4] 王林, 胡秀章, 黄焱龙, 等. 钢纤维混凝土动态抗拉强度的实验研究[J]. 振动与冲击, 2011, 30(10): 50-53+81.
WANG Lin, HU Xiuzhang, HUANG Yanlong, et al. Dyanmic tensile strength tests for steel fiber reinforced concrete [J]. Journal of Vibration and Shock, 2011, 30(10): 50-53+81.
[5] 任会兰, 宁建国, 宋水舟, 等. 基于声发射矩张量分析混凝土破坏的裂纹运动[J].力学学报, 2019, 51(6):1830-1841.
REN HuiLan, NING Jianguo, SONG Shuizhou, et al. Investigation on crack growth in concrete by moment tensor analysis of acoustic emission[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1830-1840.
[6] 宋水舟, 任会兰, 宁建国. 混合型加载下钢纤维混凝土损伤过程的声发射参数分析[J]. 兵工学报, 2022, 43 (8): 1881-1891.
SONG Huizhou, REN Huilan, NING Jianguo. Acoustic Emission Parameters in the Damage Process of Steel Fiber Reinforced Concrete under Mixed Loading [J]. Acta Armamentarii, 2022, 43(8): 1881-1891. 
[7] 李冬生,曹海. 聚乙烯醇纤维混凝土损伤演化声发射监测及其评价[J]. 振动与冲击, 2012, 31(09): 29-32+43.
LI Dongsheng, CAO Hai. Acoustic emission monitoring and evaluation of damage evolution for polyvinyl alcohol fiber concrete [J]. Journal of Vibration and Shock, 2012, 31(09): 29-32+43.
[8] G. XING, Y. XU, J. HUANG, et al.. Research on the mechanical properties of steel fibers reinforced carbon nanotubes concrete[J]. Construction and Building Materials, 2023, 392.
[9] S.A. CUI, X. XU, Z. CHEN, et al.. Effect of different sizing agent-treated basalt fibers on bending and cracking performance of reinforced BFRC beams[J]. Construction and Building Materials, 2023, 365.
[10] 付应乾, 俞鑫炉, 董新龙, 等. 混凝土材料拉伸强度的应变率强化效应实验研究[J]. 兵工学报, 2020, 41(1):143-151.
FU Yingqian, YU Xinlu, DONG Xinlong, et al.. An experimental investigation on the strain rate-dependent tensile strength of plain concretes [J]. Acta Armamentarii, 2020, 41(1): 143-151. 
[11] J. YANG, K. ZHAO, X. YU, et al.. Fracture evolution of fiber-reinforced backfill based on acoustic emission fractal dimension and b-value [J]. Cement and Concrete Composites, 2022, 134.
[12] W. ZHOU, J. MO, L. ZENG, et al.. Fracture behavior of polypropylene fiber reinforced concrete modified by rubber powder exposed to elevated temperatures [J]. Construction and Building Materials, 2022, 346.
[13] H. REN, T. LI, J. NING, et al.. Analysis of damage characteristics of steel fiber-reinforced concrete based on acoustic emission [J]. Engineering Failure Analysis, 2023, 148.
[14] H. REN, T. LI, J. NING, et al.. Bending damage and fractal characteristics of steel fiber-reinforced concrete under three-point bending test [J]. Construction and Building Materials, 2023, 409.
[15] 崔正龙, 费海超, 孙万吉, 等. 钢纤维再生粗骨料混凝土受压声发射特性与损伤演化[J]. 振动与冲击, 2023, 42(05):136-142.
CUI Zhenglong, FEI Haichao, SUN Wanji, et al.. Acoustic emission characteristics and damage evolution of steel fiber recycled coarse aggregate concrete under compression [J]. Journal of Vibration and Shock, 2023, 42(05): 136-142.
[16] S. TAYFUR, N. ALVER, S. ABDI, et al.. Characterization of concrete matrix/steel fiber de-bonding in an SFRC beam: Principal component analysis and k-mean algorithm for clustering AE data[J]. Engineering Fracture Mechanics, 2018, 194: 73-85.
[17] A.K. JAIN, Data clustering: 50 years beyond K-means[J], Pattern Recognition Letters, 2010, 31(8): 651-666.
[18] R. ANAY, V. SOLTANGHARAEI, L. ASSI, et al.. Identification of damage mechanisms in cement paste based on acoustic emission[J]. Construction and Building Materials, 2018, 164: 286-296.
[19] W. ROUNDI, A. EL MAHI, A. EL GHARAD, et al.. Acoustic emission monitoring of damage progression in Glass/Epoxy composites during static and fatigue tensile tests[J]. Applied Acoustics, 2018, 132: 124-134.
[20] B. LI, Y. CHI, L. XU, et al.. Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete[J]. Construction and Building Materials, 2018, 191: 80-94.
[21] H. GUO, J. TAO, Y. CHEN, et al.. Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete[J]. Construction and Building Materials, 2019, 224: 504-514.
[22] R. GUTIéRREZ-MOIZANT, M. RAMíREZ-BERASATEGUI, S. SáNCHEZ-SANZ, et al.. Experimental verification of the boundary conditions in the success of the Brazilian test with loading arcs. An uncertainty approach using concrete disks[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132.
[23] JG/T472-2015. 钢纤维混凝土[S]. 北京:中国标准出版社,2015.
JG/T472-2015. Steel fiber reinforced concrete [S]. Beijing: Standards Press of China, 2015.
[24] P.J. ROUSSEEUW. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20:53-65.
[25] I. SAHA.R.V. SAGAR, Classification of the acoustic emissions generated during the tensile fracture process in steel fibre reinforced concrete using a waveform-based clustering method [J]. Construction and Building Materials, 2021, 294.
[26] M.G. ALBERTI, A. ENFEDAQUE.J.C. GáLVEZ. On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete [J]. Cement and Concrete Composites, 2017, 77: 29-48.
[27] A. BEHNIA, H.K. CHAI.T. SHIOTANI. Advanced structural health monitoring of concrete structures with the aid of acoustic emission[J]. Construction and Building Materials, 2014, 65: 282-302.
[28] B.A. LI, L.H. XU, Y.C. SHI, et al.. Effects of fiber type, volume fraction and aspect ratio on the flexural and acoustic emission behaviors of steel fiber reinforced concrete [J]. Construction and Building Materials, 2018, 181: 474-486.
[29] M.K. LEE.B.I.G. BARR. Strength and fracture properties of industrially prepared steel fibre reinforced concrete [J]. Cement & Concrete Composites, 2003, 25(3): 321-332.
[30] K. WILLE.A.E. NAAMAN. Pullout behavior of high-strength steel fibers embedded in ultra-high-performance concrete [J]. Aci Materials Journal, 2012, 109(4): 479-488.

PDF(4353 KB)

Accesses

Citation

Detail

段落导航
相关文章

/