超临界CO2直旋混合射流破岩机理及喷嘴结构影响规律

薛永志, 李俊, 丁亮亮, 罗旺, 赵耀

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 232-242.

PDF(4946 KB)
PDF(4946 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 232-242.
土木工程

超临界CO2直旋混合射流破岩机理及喷嘴结构影响规律

  • 薛永志,李俊*,丁亮亮,罗旺,赵耀
作者信息 +

Rock breaking mechanism of supercritical CO2 straight-swirling mixed jet and influences of nozzle structure

  • XUE Yongzhi, LI Jun*, DING Liangliang, LUO Wang, ZHAO Yao
Author information +
文章历史 +

摘要

超临界CO2直旋混合射流综合了超临界CO2射流和直旋混合射流的技术优势,是油气资源勘探开发的新型破岩工具。基于流-固-热耦合理论,建立了超临界CO2直旋混合射流破岩的三维计算模型,研究了超临界CO2直旋混合射流破岩机理。结果表明,超临界CO2直旋混合射流兼具正向冲击、径向张力、周向剪力和热应力作用;热应力的存在显著提升岩石所受的Mises应力,但增幅会随冲击时间的延续而变弱。将冲蚀作用和漫流作用作为重要参量,分析了不同喷嘴结构参数对射流流场特性的影响。发现螺旋槽开口角度为45°,中心孔直径为2 mm,螺旋槽个数为4个和叶轮螺旋角度为60°时,射流的流场特性呈最优状态。研究结果可为超临界CO2直旋混合射流的优化应用提供参考。

Abstract

Straight-swirling mixed supercritical CO2 (SS-SC-CO2) jet is a new rock-breaking tool for oil and gas exploration and development that combines the technical advantages of SC-CO2 jet and straight-swirling mixed jet. A three-dimensional computational model of the SS-SC-CO2 jet rock-breaking was established based on the theory of fluid-solid-thermal coupling. The mechanism of SS-SC-CO2 jet rock-breaking was studied. The results show that the SS-SC-CO2 jet combines axial impact, radial tension, circumferential shear, and thermal stress; the existence of thermal stress increases the Mises stress of rock, but the increase decreases with the extension of impact time. The effects of different nozzle structural parameters on the jet flow field characteristics were analyzed by taking the erosion and diffusion effects as important references. The optimal flow field characteristics of the jet are achieved when the spiral groove opening angle is 45°, the diameter of the center hole is 2 mm, the number of spiral grooves is 4, and the impeller spiral angle is 60°. The study results provide a reference for optimizing the application of SS-SC-CO2 jets.

关键词

射流破岩 / 超临界CO2 / 直旋混合射流 / 喷嘴结构

Key words

jet rock-breaking / supercritical CO2 / straight-swirling mixed jet / nozzle structure

引用本文

导出引用
薛永志, 李俊, 丁亮亮, 罗旺, 赵耀. 超临界CO2直旋混合射流破岩机理及喷嘴结构影响规律[J]. 振动与冲击, 2025, 44(1): 232-242
XUE Yongzhi, LI Jun, DING Liangliang, LUO Wang, ZHAO Yao. Rock breaking mechanism of supercritical CO2 straight-swirling mixed jet and influences of nozzle structure[J]. Journal of Vibration and Shock, 2025, 44(1): 232-242

参考文献

[1] GUO X, HU D, LI Y, et al. Theoretical progress and key technologies of onshore ultra-deep oil/gas exploration[J]. Engineering, 2019, 5(3): 458-470.
[2] 胡晓东. 高温射流作用下花岗岩破碎机制与参数研究[D]. 北京: 中国石油大学, 2021.
[3] 高亚斌, 向鑫, 郭晓亚, 等. 钻孔水射流冲击破煤岩特性及机制研究[J]. 振动与冲击, 2022, 41(23): 51-59+85.
GAO Yabin, XIANG Xin, GUO Xiaoya, et al. Characteristics and mechanism of coal and rock breaking with water jet impact in drill hole[J]. Journal of Vibration and Shock, 2022, 41(23): 51-59+85.
[4] 黄飞, 赵志旗, 李树清, 等. 高压磨料水射流切割破碎岩石的单轴力学特征研究[J]. 振动与冲击, 2023, 42(17): 128-134+237.
HUNAG Fei, ZHAO Zhiqi, LI Shuqing, et al. Uniaxial mechanical characteristics of rocks cut and crushed by high-pressure abrasive water jet[J]. Journal of Vibration and Shock, 2023, 42(17): 128-134+237.
[5] GUO J, LI Y and WANG S. Adsorption damage and control measures of slick-water fracturing fluid in shale reservoirs[J]. Petroleum Exploration and Development, 2018, 45(2): 336-342.
[6] 贺振国, 李根生, 石李保, 等. 围压对超临界二氧化碳射流冲击力与冲蚀射孔的影响[J].振动与冲击, 2017, 36(02): 65-71+116.
HE Zhenguo, LI Gensheng, SHI Libao, et al. Effects of ambient pressure on the impinging pressure and rock erosion performance of supercritical CO2 jet[J], Journal of Vibration and Shock, 2017, 36(02): 65-71+116.
[7] 杜鹏, 卢义玉, 汤积仁, 等. 新型直旋混合射流破岩特性及机理分析[J]. 西安交通大学学报, 2016, 50(03): 81-89.
DU Peng, LU Yiyu, TANG Jiren, et al. Characteristics and mechanism of rock breaking for new type straight-swirling integrated jet[J]. Journal of Xi’an Jiaotong University, 2016, 50(03):81-89.
[8] 李根生, 王海柱, 沈忠厚, 等. 超临界CO2射流在石油工程中应用研究与前景展望[J]. 中国石油大学学报(自然科学版), 2013, 37: 76-80+87.
LI Gensheng, WANG Haizhu, SHEN Zhonghou, et al. Application investigations and prospects of supercritical carbon dioxide jet in petroleum engineering[J]. Journal of China University of Petroleum, 2013, 37: 76-80+87.
[9] 杜玉昆, 庞飞, 陈科, 等. 超临界二氧化碳喷射破碎页岩试验[J]. 地球科学, 2019, 44: 3749-3756.
DU Yukun, PANG Fei, CHEN Ke, et al. Experiment of breaking shale using supercritical carbon dioxide jet[J]. Earth Science, 2019, 44: 3749-3756.
[10] CHEN J X, YANG R Y, HUANG Z W, et al. Simulation study of supercritical carbon dioxide jet fracturing for carbonate geothermal reservoir based on fluid-thermo-mechanical coupling model[J]. Petroleum Science, 2023, 20(3): 1750-1767.
[11] AN Q Y, ZHANG Q S, LI X H, et al. Experimental study of temperature and pressure effects on rock damage caused by SC-CO2[J]. Geothermics, 2023, 114: 102797.
[12] 高军红, 付必伟, 董宗正. 自进式直旋混合喷嘴的钻进性能研究[J]. 石油机械, 2022, 50(09): 72-78.
GAO Junhong, FU Biwei, DONG Zongzheng. Drilling performance of self-propelled straight-rotary mixing nozzle[J]. China Petroleum Machinery, 2022, 50(09): 72-78.
[13] DU P, PENG X F, WEI Z D, et al. Internal flow field and rock-breaking characteristics of a straight-swirling mixed jet and its influential factors in radial jet drilling[J]. Energy Science & Engineering, 2022, 10(9): 3411-3422.
[14] DU P, PENG X F, WEI Z D, et al. Flow field investigation of a straight-swirling integrated jet for radial jet drilling[J]. Energy Reports, 2022, 8: 7434-7443.
[15] 田守嶒, 张启龙, 李根生, 等. 超临界CO2直旋混合射流破岩特性的实验研究[J]. 爆炸与冲击, 2016, 36(02): 189-197.
TIAN Shouceng, ZHANG Qilong, LI Gensheng, et al. Experimental study on rock-erosion features with combined swirling and round jet of supercritical carbon dioxide[J]. Explosion and Shock Waves, 2016, 36(02): 189-197.
[16] 田守嶒, 刘庆岭, 盛茂, 等. 超临界CO2直旋混合射流冲蚀岩石的损伤破坏机制[J]. 中国科学:物理学 力学 天文学, 2017, 47(11): 78-87.
TIAN Shouceng, LIU Qingling, SHENG Mao, et al. mechanisms of rock breaking by swirling-round SC-CO2 jet[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(11): 78-87.
[17] 张启龙, 田守嶒, 陈立强, 等. 基于灰色关联度的超临界二氧化碳直旋射流参数敏感性[J]. 大庆石油地质与开发, 2021, 40(04): 63-72.
ZHANG Qilong, TIAN Shouceng, CHEN Liqiang, et al. Parameter sensitivity of supercritical CO2 swirling-round jet based on grey correlation degree method[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(04): 63-72.
[18] YANG Y L, LIU H, MAO W X, et al. Study on the impact pressure of swirling-round supercritical CO2 jet flow and its influencing factors[J]. Energies, 2021, 14(1): 15.
[19] LI M K, NI H J, CAO Y G, et al. Flow energy transformation and dissipation mechanisms of carbon dioxide, nitrogen, and water jets[J]. Journal of Natural Gas Science and Engineering, 2020, 84(2): 14.
[20] ZHANG H D, LIU Y, TANG J R, et al. Investigation on the fluctuation characteristics and its influence on impact force of supercritical carbon dioxide jet[J]. Energy, 2022, 253: 14.
[21] 尹露, 张万福, 顾乾磊, 等. 超临界二氧化碳迷宫密封动力特性研究[J]. 振动与冲击, 2020, 39(22): 128-136.
YIN Lu, ZHANG Wanfu, GU Qianlei, et al. Study on dynamic characteristics of labyrinth seals with supercritical carbon dioxide[J], Journal of Vibration and Shock, 2020, 39(22): 128-136.
[22] LIU Y, GUO X H, WEI J P, et al. Application of supercritical carbon dioxide jet: A parametric study using numerical simulation model[J]. Journal of Petroleum Science and Engineering, 2021, 201: 17.
[23] ZHANG S K, HUANG Z W, LI G S, et al. Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet[J]. Applied Thermal Engineering, 2018, 129: 1348-1357.
[24] ZHOU Z, LU Y Y, TANG J R, et al. Numerical simulation of supercritical carbon dioxide jet at well bottom[J]. Applied Thermal Engineering, 2017, 121: 210-217.

PDF(4946 KB)

Accesses

Citation

Detail

段落导航
相关文章

/