基于改进多目标粒子群算法的码头结构传感器优化布置

周鹏飞, 张雍

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 243-251.

PDF(4143 KB)
PDF(4143 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 243-251.
土木工程

基于改进多目标粒子群算法的码头结构传感器优化布置

  • 周鹏飞*,张雍
作者信息 +

Wharf structural optimal sensor placement based on IMOPSO algorithm

  • ZHOU Pengfei*, ZHANG Yong
Author information +
文章历史 +

摘要

为解决码头结构健康监测领域的传感器优化布置问题,提出了一种基于改进多目标粒子群的传感器优化布置算法。针对传统方法寻优效率低、优化目标单一,难以同时满足模态识别、损伤识别等复杂的健康监测需求的问题,构建了以损伤敏感性和冗余性、损伤识别不适定性以及模态线性独立性的多目标优化函数;改进了多目标粒子群算法(IMOPSO)获取Pareto解集,利用TOPSIS熵权法确定最优传感器布置方案。在某高桩码头实验表明:与有效独立法和有效独立-模态动能法相比,IMOPSO得到的布设方案测点分布更均匀,在灵敏度矩阵条件数、MAC最大非对角元、损伤冗余性指标分别优化了45%、90%、5%以上;多种工况下的损伤位置和程度识别准确率在不同噪声下平均提高5%和7%以上。 

Abstract

In order to solve the problem of optimal sensor placement in the field of wharf structure health monitoring, an optimal sensor placement algorithm based on improved multi-objective particle swarm optimization was proposed. In order to solve the problems of low optimization efficiency and single optimization objective of traditional methods, which was difficult to meet the complex health monitoring requirements such as modal identification and damage identification at the same time, a multi-objective optimization function based on damage sensitivity and redundancy, damage identification ill-posedness and modal linear independence was constructed, and the multi-objective particle swarm optimization algorithm (IMOPSO) was improved to obtain Pareto solution set, and the optimal sensor placement scheme was determined using TOPSIS entropy method. The test on a high-piled wharf shows that compared with effective independence method and effective independence-modal kinetic energy method, the distribution of measuring points using IMOPSO is more uniform, and the condition number of sensitivity matrix, the maximum non-diagonal element of MAC and the index of damage redundancy are optimized more than 45%, 90% and 5% respectively; The accuracy of damage location and degree identification under various working conditions is improved more than 5% and 7% respectively.

关键词

码头结构健康监测 / 传感器优化布置 / 损伤识别 / 多目标粒子群算法

Key words

wharf structural health monitoring / optimal sensor placement / damage identification / multi-objective particle swarm algorithm

引用本文

导出引用
周鹏飞, 张雍. 基于改进多目标粒子群算法的码头结构传感器优化布置[J]. 振动与冲击, 2025, 44(1): 243-251
ZHOU Pengfei, ZHANG Yong. Wharf structural optimal sensor placement based on IMOPSO algorithm[J]. Journal of Vibration and Shock, 2025, 44(1): 243-251

参考文献

[1] 2022年交通运输行业发展统计公报 [J]. 中国水运, 2023, (07): 29-33.
Statistical Bulletin on the Development of Transportation Industry in 2022 [J]. China Water Transport, 2023, (07): 29-33.
[2] 时闽生, 刘思国, 张雨雷, 等. 高桩码头结构健康监测系统研究 [J]. 中国港湾建设, 2021, 41(03): 67-71.
SHI Min-sheng, LIU Si-guo, ZHANG Yu-lei, et al.  Research on structural health monitoring system of high piled wharf [J]. China Harbour Engineering, 2021, 41(03): 67-71. 
[3] 吴锋, 卓杨, 刘旭, 等. 高桩码头全寿命周期的健康监测技术 [J]. 水运工程, 2023, (02): 44-48
WU Feng, ZHUO Yang, LIU Xu, et al. Health monitoring technique of high piled wharf based on life cycle theory [J]. Port & Waterway Engineering, 2023, (02): 44-48.
[4] YANG J H, PENG Z R. Beetle-Swarm Evolution Competitive Algorithm for Bridge Sensor Optimal Placement in SHM [J]. Ieee Sens J, 2020, 20(15): 8244-8255.
[5] 杨辰. 结构健康监测的传感器优化布置研究进展与展望 [J]. 振动与冲击, 2020, 39(17): 82-93.
YANG Chen. Advances and prospects for optimal sensor placement of structural health monitoring [J]. Journal of Vibration and Shock, 2020, 39(17): 82-93.
[6] KAMMER D C. Estimation of structural response using remote sensor locations [J]. Journal of Guidance Control and Dynamics, 1997, 20(3): 501-508.
[7] SHI Z Y, LAW S S, ZHANG L M. Optimum sensor placement for structural damage detection [J]. Journal of Engineering Mechanics, 2000, 126(11): 1173-1179.
[8] CARNE T G, DOHRMANN C R. A Modal Test Design Strategy for Model Correlation [J]. Proceedings of 13th International Modal Analysis Conference, 1995, 2460: 927-933.
[9] 刘伟, 高维成, 李惠, 等. 基于有效独立的改进传感器优化布置方法研究 [J]. 振动与冲击, 2013, 32(06): 54-62.
LIU Wei, GAO Wei-cheng, LI Hui, et al. Improved optimal sensor placement methods based on effective independence [J]. Journal of Vibration and Shock, 2013, 32(06): 54-62.
[10] 范恒承, 余岭. 一种传感器优化布置的多能量参数改进有效独立法 [J]. 振动与冲击, 2020, 39(24): 25-31.
FAN Hengcheng, YU Ling. An improved effective independent method based on multi energy parameters for optimal sensor placement [J]. Journal of Vibration and Shock, 2020, 39(24): 25-31.
[11] 胥松奇, 周世良, 曹师宝. 基于离散天牛群算法的高桩码头传感器优化布置 [J]. 水运工程, 2020, (06): 46-52.
XU Song-qi, ZHOU Shi-liang, CAO Shi-bao. Sensor optimal placement of high piled-wharf based on binary beetle-swarm algorithm [J]. Port & Waterway Engineering, 2020, (06): 46-52.
[12] 高博, 柏智会, 宋宇博. 基于自适应引力算法的桥梁监测传感器优化布置 [J]. 振动与冲击, 2021, 40(06): 86-92.
GAO Bo, BAI Zhihui, SONG Yubo. Optimal placement of sensors in bridge monitoring based on an adaptive gravity search algorithm [J]. Journal of Vibration and Shock, 2021, 40(06): 86-92.
[13] SU J B, LUAN S L, ZHANG L M, et al. Partitioned genetic algorithm strategy for optimal sensor placement based on structure features of a high-piled wharf [J]. Structure Control & Health Monitoring, 2019, 26(1): e2289.
[14] ZHANG C L, ZHOU Z J, HU G Y, et al. Health assessment of the wharf based on evidential reasoning rule considering optimal sensor placement [J]. Measurement, 2021, 186: 110184.
[15] 张笑华, 吴圣斌, 方圣恩. 采用Pareto人工鱼群算法的结构健康监测传感器位置多目标优化 [J]. 振动工程学报, 2022, 35(02): 351-358.
ZHANG Xiao-hua, WU Sheng-bin, FANG Sheng-en.  Multi-objective sensor optimal placement for structural health monitoring based on Pareto artificial fish swarm algorithm [J]. Journal of Vibration Engineering, 2022, 35(02): 351-358.
[16] 孙小猛, 冯新, 周晶. 基于损伤可识别性的传感器优化布置方法 [J]. 大连理工大学学报. 2010: 264-70.
SUN Xiao-meng, FENG Xin, ZHOU Jing. A method for optimum sensor placement based on damage identifiability[J]. Journal of Dalian University of Technology. 2010: 264-70.
[17] 刘佳, 李丹, 高立群, 等. 多目标无功优化的向量评价自适应粒子群算法 [J]. 中国电机工程学报, 2008, (31): 22-28.
LIU Jia, LI Dan, GAO Li-qun, et al. Vector Evaluated Adaptive Particle Swarm Optimization Algorithm for Multi-objective Reactive Power Optimization [J]. Proceedings of the CSEE, 2008, (31): 22-28.
[18] 韩敏, 何泳. 基于高斯混沌变异和精英学习的自适应多目标粒子群算法 [J]. 控制与决策, 2016, 31(08): 1372-1378.
HAN Min, HE Yong. Adaptive multi-objective particle swarm optimization with Gaussian chaotic mutation and elite learning [J]. Control and Decision, 2016, 31(08): 1372-1378. 
[19] JTS-147-7-2022. 水运工程桩基设计规范[S]. 北京:  交通运输部,  2022.
JTS-147-7-2022. Code for design of pile foundation for waterway engineering [S]. Beijin: Ministry of Transport,  2022.
[20] 周述美, 鲍跃全, 李惠. 基于结构灵敏度分析与稀疏约束优化的结构损伤识别方法 [J]. 振动与冲击, 2016, 35(09): 135-140.
ZHOU Shu-mei, BAO Yue-quan, LI Hui. Structural damage identification based on structural sensitivity analysis and sparse restrains optimization [J]. Journal of Vibration and Shock, 2016, 35(09): 135-140.

PDF(4143 KB)

Accesses

Citation

Detail

段落导航
相关文章

/