正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究

郭文远1, 李世民1, 王志岗2, 高涛1, 3, 陶连金2, 谢霖1, 刘建功2, 刘华南1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 252-261.

PDF(4334 KB)
PDF(4334 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 252-261.
土木工程

正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究

  • 郭文远1,李世民1,王志岗*2,高涛1,3,陶连金2,谢霖1,刘建功2,刘华南1
作者信息 +

Mechanical analysis method and anti-fracture design of shallow buried subway tunnels under normal fault dislocation

  • GUO Wenyuan1, LI Shimin1, WANG Zhigang*2, GAO Tao1,3, TAO Lianjin2, XIE Lin1,LIU Jiangong2, LIU Huanan1
Author information +
文章历史 +

摘要

震害调查研究表明穿越活动断裂带隧道的破坏是极其严重的。本文以太原市城市轨道交通1号线一期工程区间隧道穿越交城断裂带为工程依托,通过Pasternak双参数地基模型建立力学分析模型并推导了正断层错动下地下管线纵向响应解析解,然后采用ABAQUS软件建立了三维精细化有限元模型。解析解计算结果与数值模拟计算结果吻合度较好,证明了解析解的正确性。最后,在设定的重点设防区域内采用节段衬砌+柔性接头组合形式,对比分析节段长度、接头纵向位置和柔性接头宽度对隧道结构整体减灾效果影响。结果表明:正断层错动下地下管线纵向响应的解析解计算结果可为重点设防区域的确定提供参考。采用节段衬砌+柔性接头组合形式可有效降低隧道结构的破坏程度和范围。正断层错动作用时,节段长度越短隧道结构破坏范围越小,柔性接头宽度的增加会降低隧道结构的破坏程度和范围,破坏区域集中在节段衬砌结构的端头部位。采用对缝模式设置柔性接头时可最大程度发挥接头的变形吸能作用,其减灾效果最优。研究可为穿越活动断裂带隧道工程采用节段+柔性接头组合形式的抗断设计和分析提供理论依据。

Abstract

Seismic research shows that the damage of tunnels crossing active fault zones is extremely serious. In this paper, based on the project of Taiyuan City Urban Railway Line 1 Phase I Project, the interval tunnel crossing the Jiaocheng fault zone, the mechanical analysis model is established by Pasternak two-parameter foundation model, and the analytical solution of the longitudinal response of the underground pipeline under the positive fault is derived, and then the three-dimensional refined finite element model is established by ABAQUS software. The results of the analytical solution are in good agreement with the numerical simulation results, which proves the correctness of the analytical solution. Finally, the combination of segmental lining and flexible joints in the key protection zone is used to compare and analyse the effects of segment length, longitudinal position of joints and width of flexible joints on the overall disaster reduction effect of the tunnel structure. The results show that the results of the analytical solution of the longitudinal response of the underground pipeline under the fault movement can provide a reference for the determination of the key protection zone. The combination of segmental lining and flexible joints can effectively reduce the degree and extent of damage to the tunnel structure. The shorter the length of the tunnel section, the smaller the area of damage; increasing the width of the flexible joint will reduce the degree and extent of damage to the tunnel structure, and the damage area will be concentrated in the end part of the segmental lining structure. When the flexible joints are installed in the butt joint mode, the deformation and energy absorption of the joints can be maximised, and the disaster reduction effect is optimal. The study can provide a theoretical basis for the design and analysis of the fracture resistance design of tunnel projects crossing active fault zones using the combination of segmental + flexible joints.

关键词

地铁隧道 / 活动断裂带 / 解析解 / 铰接隧道 / 数值模拟 / 抗断设计

Key words

Metro tunnel / Active fault zone / Analytical solution / Articulated tunnel / Numerical modelling / Break-resistant design

引用本文

导出引用
郭文远1, 李世民1, 王志岗2, 高涛1, 3, 陶连金2, 谢霖1, 刘建功2, 刘华南1. 正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究[J]. 振动与冲击, 2025, 44(1): 252-261
GUO Wenyuan1, LI Shimin1, WANG Zhigang2, GAO Tao1, 3, TAO Lianjin2, XIE Lin1, LIU Jiangong2, LIU Huanan1. Mechanical analysis method and anti-fracture design of shallow buried subway tunnels under normal fault dislocation[J]. Journal of Vibration and Shock, 2025, 44(1): 252-261

参考文献

[1] AN S, TAO LJ, HAN XC, et al. Application of two-level design method on subway tunnel crossing active fault: a case study on Urumqi subway tunnel intersected by reverse fault dislocation[J]. Bulletin of engineering geology and the environment, 2021, 80:3871-3884.
[2] 王志岗, 陶连金, 史明, 等. 基于混凝土损伤状态量化方法评估穿越活动断裂带的城市地铁隧道的抗断性能研究[J]. 应用基础与工程科学学报, 1-15[2024-06-17].
WANG Zhigang, TAO Lianjin, SHI Ming, et al. Investigation of fracture resistance and quantitative damage state indices of urban metrotunnels crossing active fault zones[J]. Journal of Basic Science and Engineering, 1-15[2024-06-17].
[3] 李瀚源, 李兴高, 杨益, 等. 考虑环缝接头塑性变形的跨断层盾构隧道纵向响应解析解(英文)[J].Journal of Central South University, 2023, 30(05):1675-1694. 
[LI Hanyuan, LI Xinggao, YANG Yi, et al. Analytical solution of longitudinal response of cross-fault shield tunnel considering plastic deformation of ring joint[J]. Journal of Central South University, 2023, 30(05):1675-1694.]
[4] 陶连金, 王志岗, 石城, 等. 基于Pasternak地基模型的断层错动下管线结构纵向响应的解析解[J]. 岩土工程学报, 2022, 44(09):1577-1586+1-2. 
[TAO Lianjin, WANG Zhigang, SHI Cheng, et al. Analytical solution for longitudinal response of pipeline structure under fault dislocation based on Pasternak foundation model [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(09): 1577-1586+1-2.]
[5] TAO LJ, WANG ZG, SHI C, et al. Investigation of the longitudinal mechanical response of pipeline or tunnel under reverse fault dislocation[J]. Rock Mechanics and Rock Engineering, 2023, 56(9): 6237-6259.
[6] 禹海涛, 卫一博. 穿断层分段柔性接头隧道纵向地震响应解析解[J].岩土工程学报, 2023, 45(05):912-920. [YU Haitao, WEI Yibo. Analytical solution of longitudinal seismic response of segmental flexible joint tunnels through faults[J]. Journal of Geotechnical Engineering, 2023, 45(05):912-920.]
[7] 闫高明, 赵伯明, 高波, 等. 穿越断层分段柔性接头隧道纵向地震响应解析解[J]. 振动与冲击, 2022, 41(13):228-238. 
[YAN Gaoming, ZHAO Boming, GAO Bo,et al. Analytical solution to longitudinal seismic response of fault-crossing tunnel withsegmented flexible joints[J]. Journal of Vibration and Shock, 2022, 41(13):228-238.]
[8] TAO ZG, GENGQ, ZHU C, et al. The mechanical mechanism of large-scale toppling failure for counter-inclined rock slopes[J]. Journal of Geophysics and Engineering, 2019, 16(3): 541-558.
[9] GONG YF, YAO AJ, LI YL, et al. Model test study on sliding-toppling composite deformation evolution of anti-dip layered rock slope[J]. Bulletin of Engineering Geology and the Environment, 2023, 82, 194.
[10] WANG ZG, TAO LJ, SHI C, et al. Response and failure mechanism of utility tunnel with flexible joints under reverse fault: an experimental, numerical, and analytical investigation[J]. Earthquake Spectra, 2023, 39(1): 335-361.
[11] 王志岗, 陶连金, 石城, 等. 逆断层错动作用下考虑柔性接头的综合管廊结构力学行为研究[J]. 铁道科学与工程学报, 2023,20(06):2256-2267. 
[WANG Zhigang, TAO Lianjin, SHI Cheng, et al. Study on the mechanical behavior of utility tunnel structure considering flexible joints under reverse fault dislocation [J]. Journal of Railway Science and Engineering, 2023, 20(06):2256-2267.]
[12] 王志岗, 陶连金, 石城, 等. 逆断层错动作用下双仓管廊结构力学特性和抗断设计研究[J]. 土木工程学报, 2024, 57(7): 1-14.
[WANG Zhigang, TAO Lianjin, SHI Cheng, et al. Mechanical properties and anti-breaking resilience of double-box underground utilitytunnel structure under reverse fault dislocation[J]. China Civil Engineering Journal, 2024, 57(7): 1-14.
[13] LIN M L, CHUNG C F, JENG F S. Deformation of overburden soil induced by thrust fault slip[J]. Engineering Geology, 2006, 88(1-2):70-89.
[14] 刘学增, 王煦霖, 林亮伦. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究[J].岩石力学与工程学报,2013,32(08):1714-1720. 
[LIU Xuezeng, WANg Hulin, LIN Lianglun. Modelling study on the effect of 75° dipping angle positive fault viscous-slip misalignment on road tunnels[J]. Journal of Rock Mechanics and Engineering, 2013, 32(08):1714-1720.]
[15] 刘学增, 王煦霖, 林亮伦. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究[J]. 土木工程学报, 2014, 47(02):121-128. 
[LIU Xuezeng, WANg Hulin, LIN Lianglun. Experimental study on the effect of 60° dip angle positive fault viscous slip misalignment on mountain tunnels[J]. Journal of Civil Engineering, 2014, 47(02):121-128.]
[16] 崔光耀, 李鹏宇, 王明年, 等. 强震区黏滑断层隧道刚柔相济抗减震技术模型试验研究[J]. 振动与冲击, 2020, 39(05):194-200+207. 
[CUI Guangyao, LI Pengyu, WANG Mingnian,et al. Model tests for safety of stick-slip fault tunnel in strong earthquake area using rigidflexible combined anti-shock absorption technology[J]. Journal of Vibration and Shock, 2020, 39(05):194-200+207.]
[17] 方林. 穿越断层隧道震害及减震措施研究[D]. 成都:西南交通大学, 2006. 
[FANG Lin. Research on seismic hazard and mitigation measures of tunnels crossing faults[D]. Chengdu: Southwest Jiaotong University, 2006.]
[18] 郭翔宇, 耿萍, 丁梯, 等. 逆断层黏滑作用下隧道力学行为研究[J]. 振动与冲击, 2021, 40(17):249-258. 
[GUO Xiangyu, GENG Ping, DING Ti, et al. Mechanical behavior of tunnel under stick-slip action of reverse fault[J]. Journal of Vibration and Shock, 2021, 40(17):249-258.]
[19] ZHONG ZL, WANG Z, ZHAO M, et al. Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement[J]. Tunnelling and Underground Space Technology, 2020, 104.
[20] 赵坤, 陈卫忠, 赵武胜, 等.逆断层错动作用下隧道衬砌铰接设计参数研究[J].岩石力学与工程学报,2018,37(S1):3412-3421. 
[ZHAO Kun, CHEN Weizhong, ZHAO Wusheng, et al. Research on design parameters of tunnel lining articulation under the action of reverse fault misalignment[J]. Journal of Rock Mechanics and Engineering, 2018, 37(S1):3412-3421.]
[21] 蒋树屏, 李鹏, 林志. 穿越活动断层区隧道的抗断设计对策[J].重庆交通大学学报(自然科学版), 2008, 27(6):1034-1041. 
[JIANG Shuping, LI Peng, LIN Zhi. Countermeasures for the design of fault-resistant tunnels through active fault zones[J]. Journal of Chongqing Jiaotong University, 2008, 27(6):1034-1041.]
[22] CAI QP, NG CWW. Analytical approach for estimating ground deformation profile induced by normal faulting in undrained clay[J]. Canadian Geotechnical Journal, 2013, 50:413–22. 
[23] TANAHASHI H. Formulas for an Infinitely Long Bernoulli–Euler Beam on the Pasternak Model[J]. Soils and Foundations, 2004, 44(5):109–118. 
[24] YU J, ZHANG C, HUANG M. Soil–pipe interaction due to tunnelling: Assessment of Winkler modulus for underground pipelines[J]. Computers and Geotechnics, 2013, 50:17–28. 
[25] ROBOSKI J, FINNO RJ. Distributions of ground movements parallel to deep excavations in clay[J]. Canadian Geotechnical Journal, 2006, 43:43–58. 
[26] LOUKIDIS D, BOUCKOVALAS G D, PAPADIMITRIOU A G. Analysis of fault rupture propagation through uniform soil cover[J]. Soil Dynamics And Earthquake Engineering, 2009, 29:1389–404. 
[27] 中华人民共和国住房和城乡建设部组织. 混凝土结构设计规范: GB 50010-2010 [S]. 中国建筑工业出版社, 2010. 
[Ministry Of Construction Of The People’S Republic Of China. Code for design of concrete structures (GB 50010-2010), China Architecture and Building Press, Beijing, 2010.]
[28] SIDOROFF F, DOGUI A. Some issues about anisotropic elastic–plastic models at finite strain [J]. International journal of solids and structures, 2001, 38(52):9569–9578.

PDF(4334 KB)

Accesses

Citation

Detail

段落导航
相关文章

/