铁基形状记忆合金-变摩擦复摆隔震连续梁桥地震反应分析

尚继英, 娄东旭, 韩建平, 宋炳磊, 马润博

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 262-271.

PDF(4976 KB)
PDF(4976 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 262-271.
土木工程

铁基形状记忆合金-变摩擦复摆隔震连续梁桥地震反应分析

  • 尚继英,娄东旭,韩建平*,宋炳磊,马润博
作者信息 +

Seismic response analysis of continuous beam bridge with Fe-SMA-DVFPBs

  • SHANG Jiying, LOU Dongxu, HAN Jianping*, SONG Binglei, MA Runbo
Author information +
文章历史 +

摘要

针对传统摩擦复摆隔震桥梁支座位移过大、自复位能力不足等问题,利用变摩擦机制和形状记忆合金的超弹性特性,研发了一种新型铁基形状记忆合金变摩擦复摆隔震支座(iron-based shape memory alloy-double concave variable friction pendulum bearing, Fe-SMA-DVFPB)。构建其本构模型,并确定其等效分析模型。提出Fe-SMA-DVFPB隔震桥梁基于位移的抗震设计方法,以实际工程为背景,分别设计了应用不同类型支座的隔震桥梁,并对用不同类型支座隔震的桥梁抗震性能进行对比分析。研究表明:相比传统摩擦复摆支座隔震桥梁,Fe-SMA-DVFPB隔震桥梁支座相对位移最大减小量为23.79%,残余位移最大减小量为93.56%;应用Fe-SMA-DVFPB隔震支座能更有效地控制支座相对位移与残余位移;Fe-SMA-DVFPB隔震桥梁支座相对位移与残余位移减小量明显大于墩底弯矩和剪力增加量。Fe-SMA-DVFPB能够进一步提升桥梁的震后可恢复能力。

Abstract

Addressing concerns such as excessive displacement and inadequate self-resetting capabilities in bearings for isolated bridges employing traditional double friction pendulum bearings, a new type of iron-based shape memory alloy-double concave variable friction pendulum bearing (Fe-SMA-DVFPB) was developed utilizing both the variable friction mechanism and the superelastic characteristics of shape memory alloy. Its constitutive model is constructed and its equivalent analysis model is determined. The displacement-based seismic design method of isolated bridges employing Fe-SMA-DVFPB is proposed. Drawing from practical engineering insights, isolation bridges are individually designed with various types of bearings, facilitating a comparative and analytical examination of their seismic performance. The research findings indicate that, in comparison to isolated bridges equipped with traditional double friction pendulum bearings, those utilizing Fe-SMA-DVFPBs demonstrate a notable improvement, with a maximum reduction in the relative displacement of bearings and residual displacement by 23.79% and 93.56%, respectively. The application of Fe-SMA-DVFPB isolation bearings effectively enhances control over both relative displacement and residual displacement. The decrease in relative displacement and residual displacement of the bearings in the isolated bridge significantly exceeds the increase in bending moment and shear at the pier bottom. The implementation of Fe-SMA-DVFPB can enhance the post-earthquake resilience of bridges. 

关键词

铁基形状记忆合金 / 变摩擦复摆隔震支座 / 本构模型 / 等效分析模型 / 抗震性能

Key words

iron-based shape memory alloy / double concave variable friction pendulum isolation bearing / constitutive model / equivalent analysis model / seismic performance

引用本文

导出引用
尚继英, 娄东旭, 韩建平, 宋炳磊, 马润博. 铁基形状记忆合金-变摩擦复摆隔震连续梁桥地震反应分析[J]. 振动与冲击, 2025, 44(1): 262-271
SHANG Jiying, LOU Dongxu, HAN Jianping, SONG Binglei, MA Runbo. Seismic response analysis of continuous beam bridge with Fe-SMA-DVFPBs[J]. Journal of Vibration and Shock, 2025, 44(1): 262-271

参考文献

[1]. TSAI C S, LU PO-CHING, CHEN WEN-SHIN, et al. Applications of trench and trajectory friction pendulum systems to seismic mitigation of structures [C]//. Proc. of the 14th World Conference on Earthquake Engineering. Beijing, China: 2008.
[2]. TSAI C S, LIN Y C. Characterization and shaking table tests of multiple trench friction pendulum system with numerous intermediate sliding plates [J]. Structural Engineering and Mechanics: An International Journal, 2011, 40(2): 167-190.
[3]. SHANG J, TAN P, ZHANG Y, et al. Experimental and analytical investigation of variable friction pendulum isolator [J]. Engineering Structures, 2021, 243: 112575.
[4]. 陈光, 崔崇, 徐锋. 新材料概论[M]. 北京: 国防工业出版社, 2013.
CHEN Guang, CUI Chong, XU Feng. Introduction to advanced materials [M]. Beijing: National Defense Industry Press, 2013.
[5]. ZHENG W Z, WANG H, LI J, et al. Parametric study of SMA-based friction pendulum system for response control of bridges under near-fault ground motions [J]. Journal of Earthquake Engineering, 2021, 25(8): 1494-1512.
[6]. 庄鹏, 孙仕琦. 形状记忆合金-摩擦摆支座滞回性能试验[J]. 建筑结构, 2021, 51(S1): 849-855. 
ZHUANG Peng, SUI Shiqi. Hysteretic properties of shape memory alloy-friction pendulum bearing [J]. Building Structure, 2021, 51(S1): 849-855.
[7]. 杨毅. SMA-FPS复合支座及其在连续梁桥中的隔震研究[D]. 南京: 东南大学, 2017.
YANG Yi. Research on SMA-FPS composite support and its isolation in continuous beam bridge [D]. Nanjing: Southeast University, 2017.
[8]. 杨大余, 常化慧, 曹飒飒. SMA-负刚度双曲面隔震装置的减震性能研究[J]. 振动与冲击, 2021, 40(10): 123-132.
YANG Dayu, CHANG Huahui, CAO Sasa. Aseismic performance of SMA-based negative stiffness isolation bearings [J].  Journal of Vibration and Shock, 2021, 40(10) : 123-132.
[9]. 邱灿星, 吴诚静, 杜修力, 等. 间隙式SMA隔震支座性能分析及负刚度改进研究[J]. 振动与冲击, 2023, 42(9): 19-26.
QIU Canxing, WU Chengjing, DU Xiuli, et al. Performance analysis of gap-SMA isolation bearing and its negative stiffness improvement. [J]. Journal of Vibration and Shock, 2023, 42(9): 19-26.
[10]. OZBULUT O E, DAGHASH S, SHERIF M M. Shape memory alloy cables for structural applications [J]. Journal of Materials in Civil Engineering, 2016, 28(4): 04015176.
[11]. 郭大伟. SMA-叠层橡胶支座低周往复荷载试验及其在近断层桥梁减隔震中的应用研究[D]. 南京: 东南大学, 2016.
GUO Dawei. Study on low-cycle reciprocating load test of SMA-laminated rubber bearing and its application in earthquake reduction of bridge near fault [D]. Nanjing: Southeast University, 2016.
[12]. DEZFULI F H, ALAM M S. Shape memory alloy wire-based smart natural rubber bearing [J]. Smart Materials and Structures, 2013, 22(4): 045013.
[13]. LEE W J, WEBER B, LEINENBACH C. Recovery stress formation in a restrained Fe–Mn–Si-based shape memory alloy used for prestressing or mechanical joining [J]. Construction and Building Materials, 2015, 95: 600-610.
[14]. CALVI P M, RUGGIERO D M. Numerical modelling of variable friction sliding base isolators [J]. Bulletin of Earthquake Engineering, 2016, 14: 549-568.
[15]. SHANG J, TAN P, ZHANG Y, et al. Seismic isolation design of structure using variable friction pendulum bearings [J]. Soil Dynamics and Earthquake Engineering, 2021, 148: 106855.
[16]. 石岩, 王东升, 孙治国. 基于位移的中等跨径减隔震桥梁抗震设计方法[J]. 中国公路学报, 2016, 29(2): 71-81.
SHI Yan, WANG Dongsheng, SUN Zhiguo. A displacement-based seismic design method for medium-span Bridges with seismic isolation [J]. China Highway Journal, 2016, 29(2): 71-81.
[17]. 石岩, 李军, 秦洪果, 等. 减隔震桥梁设计方法及抗震性能研究综述[J]. 地震工程学报, 2019, 41(5): 1121-1132.
SHI Yan, LI Jun, QIN Hongguo, et al. A review of design methods and seismic performance of seismic isolation Bridges [J]. Journal of Earthquake Engineering, 2019, 41(5): 1121-1132.
[18]. ASCE/SEI 7. Minimum design loads for buildings and other structures. American Society of Civil Engineers, 2017, VA, U.S.A.
[19]. 中国地震动参数区划图: GB18306-2015[S]. 北京: 中国标准出版社, 2016.
Zoning map of ground motion parameters in China: GB18306-2015 [S]. Beijing: Standards Press of China, 2016.
[20]. 尚继英, 谭平, 张亚飞, 等. 模块化钢框架变摩擦摆隔震结构抗震性能研究[J]. 建筑结构学报, 2021, 42(11): 1-12.
SHANG Jiying, TAN Ping, ZHANG Yafei, et al. Research on seismic performance of modular steel frame vibration isolation structure with variable friction pendulum bearing [J]. Journal of Building Structure, 2021, 42(11): 1-12.
[21]. ASGARIAN B, MORADI S. Seismic response of steel braced frames with shape memory alloy braces [J]. Journal of Constructional Steel Research, 2011, 67(1): 65-74.
[22]. 公路桥梁抗震设计细则: JTG/T B02-01-2008[S]. 北京: 人民交通出版社, 2008.
Guidelines for seismic design of highway bridges: JTG/T B02-01-2008 [S]. Beijing: China Communications Press, 2008.

PDF(4976 KB)

131

Accesses

0

Citation

Detail

段落导航
相关文章

/