黏滑摩擦的光滑化互补模型及其在摩擦摆隔震支座中的应用

吴阳, 张楠, 张欣刚, 张树翠, 毕皓皓, 姚文莉

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 272-280.

PDF(2026 KB)
PDF(2026 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 272-280.
土木工程

黏滑摩擦的光滑化互补模型及其在摩擦摆隔震支座中的应用

  • 吴阳,张楠,张欣刚*,张树翠,毕皓皓,姚文莉
作者信息 +

Smoothing NLCP model of stick-slip friction and its application in FPBs

  • WU Yang, ZHANG Nan, ZHANG Xingang*, ZHANG Shucui, BI Haohao, YAO Wenli
Author information +
文章历史 +

摘要

为研究摩擦摆隔震支座在地震作用下的黏滑摩擦响应问题,提出一种处理非光滑黏滑摩擦问题的光滑化模型。首先,基于线性互补理论构建摩擦力余量和相对滑移速度的互补方程。其次,在短时区间内对相对滑移速度进行时间平均,利用时均滑移速度代替时变滑移速度重构互补变量,并将其转化为一组非线性互补方程,从而将非光滑的黏滑摩擦问题进行光滑化处理。随后,将摩擦摆隔震支座等效为一种考虑恢复力效应的2维摩擦耦合模型,结合所提光滑化模型进行地震响应分析,并与经典的Coulomb摩擦模型和LuGre摩擦模型进行了对比验证。研究结果表明,所提模型既能够在宏观上反映黏滑摩擦的stick-slip切换,同时还能实现非光滑问题的光滑化分析,避免在非光滑事件中频繁切换动力学模型。采用不同摩擦模型对摩擦摆隔震支座的地震响应进行计算,验证了所提模型的准确性和有效性。

Abstract

To investigate the stick-slip friction response of friction pendulum bearings (FPB) under seismic actions, a smoothing model is proposed to address the non-smooth stick-slip friction problem. Firstly, complementary equations for friction saturation and relative slip velocity are formulated based on linear complementarity theory. Secondly, the relative slip velocity is averaged over short time intervals, and the complementary variable is reconstructed using the time-averaged slip velocity instead of the time-varying slip velocity, transforming it into a set of nonlinear complementary equations, thereby smoothing the non-smooth stick-slip friction problem. Subsequently, the FPB is equivalently modeled as a 2D friction-coupling model considering the effect of restitution force. Seismic response analysis is conducted using the proposed smoothing model and compared with classical Coulomb and LuGre friction models for validation. Results demonstrate that the proposed model can effectively capture the macroscopic stick-slip transition of stick-slip friction while smoothing non-smooth problems and avoiding frequent dynamic model switching in such events. Seismic responses of the FPB are computed using different friction models, verifying the accuracy and effectiveness of the proposed model.

关键词

非线性互补 / 黏滞-滑移 / 模型光滑化方法 / 摩擦摆隔震支座

Key words

NLCP / stick-slip / model smoothing method / FPB

引用本文

导出引用
吴阳, 张楠, 张欣刚, 张树翠, 毕皓皓, 姚文莉. 黏滑摩擦的光滑化互补模型及其在摩擦摆隔震支座中的应用[J]. 振动与冲击, 2025, 44(1): 272-280
WU Yang, ZHANG Nan, ZHANG Xingang, ZHANG Shucui, BI Haohao, YAO Wenli. Smoothing NLCP model of stick-slip friction and its application in FPBs[J]. Journal of Vibration and Shock, 2025, 44(1): 272-280

参考文献

[1] 魏  标,刘义伟,蒋丽忠,等. 地震作用下双曲面球型减隔震支座在铁路简支梁桥中的动力行为[J]. 土木工程学报, 2019, 52(06): 110-118.
WEI Biao, LIU Yi-wei, JIANG Li-zhong, et al. Dynamic behaviors of double spherical isolation bearing in simply-supported railway bridges under earthquakes[J] China Civil Engineering Journal 2019, 52(06): 110-118.
[2] Bao Y, Becker T. Three-dimensional double friction pendulum bearing model including uplift and impact behavior: Formulation and numerical example[J]. Engineering Structures, 2019, 199(C): 109579-109579.
[3] Cardone D,Gesualdi G,Brancato P. Restoring capability of friction pendulum seismic isolation systems[J]. Bulletin of Earthquake Engineering, 2015, 13(8): 2449-2480.
[4] Carlo F P, Antonio C D, Gianmarco L, et al. Shake table testing on restoring capability of double concave friction pendulum seismic isolation systems[J]. Earthquake Engineering Structural Dynamics, 2017, 46(14): 2337-2353.
[5] Mokha A S, Constantinou M C, Reinhorn A M. Verification of friction model of Teflon bearings under triaxial load[J]. Journal of Structural Engineering, 1993, 119(1): 240-261.
[6] Yuanzheng L , Zhouhong Z , Yale L ,et al.Seismic response analysis of a reinforced concrete continuous bridge considering coupling pounding-friction effect[J]. J. Southeast. Univ., 2018, 34(4): 340-348.
[7] Mosqueda G, Whittaker A S, Fenves G L. Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation[J]. Journal of Structural Engineering, 2004, 130(3): 433-442.
[8] 吴陶晶, 李建中, 管仲国. 双向耦合效应对FPS隔震桥梁地震响应的影响[J]. 振动与冲击, 2011, 30(02): 119-123.
WU Tao-jing, LI Jian-zhong, GUAN Zhong-guo. Bi-directional coupled effect of friction pendulum system on seismic responses of an isolated bridge[J].Journal of Vibration and Shock, 2011, 30(02): 119-123.
[9] Wei B, Dai G, Wen Y, et al. Seismic performance of isolation system of rolling friction with springs[J]. Journal of Central South University, 2014, 21(4): 1518-1525.
[10] Wei B, Wang P, He X, et al. The impact of the convex friction distribution on the seismic response of a spring-friction isolation system[J]. KSCE Journal of Civil Engineering, 2018, 22: 1203-1213.
[11] Avossa A M, Di Giacinto D, Malangone P, et al. Seismic retrofit of a multispan prestressed concrete girder bridge with friction pendulum devices[J]. Shock and Vibration, 2018, 2018.
[12] Marques F, Flores P, Pimenta Claro J C, et al. A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems[J]. Nonlinear Dynamics, 2016, 86: 1407-1443.
[13] Flores P, Ambrósio J, Lankarani H M. Contact-impact events with friction in multibody dynamics: Back to basics[J]. Mechanism and Machine Theory, 2023, 184: 105305.
[14] Ambrósio J A C. Impact of rigid and flexible multibody systems: deformation description and contact models[M]//Virtual nonlinear multibody systems. Dordrecht: Springer Netherlands, 2003: 57-81.
[15] Tian Q, Flores P, Lankarani H M. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints[J]. Mechanism and Machine Theory, 2018, 122: 1-57.
[16] 吴少培,何波,李国芳,等.含碰撞和摩擦振动系统黏滞-黏着运动转迁机理研究[J].振动与冲击,2023,42(13):75-81+118.
WU Shao-pei, HE Bo, LI Guo-fang, et al. Viscous-adhesive motion transition mechanism of vibration system with collision and friction[J].Journal of Vibration and Shock,2023,42(13):75-81+118.
[17] De Wit C C, Olsson H, Astrom K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on automatic control, 1995, 40(3): 419-425.
[18] 高炳微, 申伟, 戴野,等. 基于改进LuGre摩擦模型的阀控缸系统非线性控制策略研究[J].振动与冲击, 2023, 42(11): 139-147+155.
GAO Bing-wei, SHEN Wei, DAI Ye, et al. Research on nonlinear control strategy of valve-controlled cylinder system based on improved LuGre friction model [J].Journal of Vibration and Shock, 2023, 42(11): 139-147+155
[19] Rill G, Schaeffer T, Schuderer M. LuGre or not LuGre[J]. Multibody System Dynamics, 2024, 60(2): 191-218.
[20] Lorenzo C ,Pierre D ,Michal H , et al.3D projection of the LuGre friction model adapted to varying normal forces[J].Multibody System Dynamics,2022,55(3):267-291.
[21] 王琪,庄方方,郭易圆,等.非光滑多体系统动力学数值算法的研究进展[J].力学进展,2013,43(01):101-111.
WANG Qi, ZHUANG Fang-fang, GUO Yi-yuan, et al. Advances in the research on numerical methods for non-smooth dynamics of multibody systems [J].Advances in Mechanics,2013,43(01):101-111.
[22] Leine R I, Van Campen D H, Glocker C H. Nonlinear dynamics and modeling of various wooden toys with impact and friction[J]. Journal of vibration and control, 2003, 9(1-2): 25-78.
[23] Yunji F, Biao W. A two-dimensional friction-decoupling method based on numerical integration method and momentum theorem[J]. Engineering Structures, 2024, 117323.
[24] Xingang Z, Zhaohui Q, Gang W, et al. Model smoothing method of contact-impact dynamics in flexible multibody systems[J]. Mechanism and Machine Theory, 2019, 138124-148.

PDF(2026 KB)

Accesses

Citation

Detail

段落导航
相关文章

/