现有大跨径桥梁有限元模型修正方法(Finite element model updating, FEMU)一般未考虑运营荷载对结构动力特性的影响,导致修正后模型的参数变异性大。鉴于此,本文提出了一种考虑运营荷载的层次贝叶斯有限元模型修正方法,该方法包含考虑温度和交通荷载的概率参数修正、概率响应预测和结构状态评估。首先,根据监测数据的相关性分析结果确定了计算理论频率时需要考虑的荷载。随后,建立了温度-弹性模量线性关系,并基于动态称重(Weigh-in-motion, WIM)数据,提出一种车辆荷载估计方法,以在有限元模型中定量考虑运营荷载对结构频率的影响。同时,引入两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)采样方法和响应面代理模型,以提高概率模型修正的计算速率。该方法在一座采集了两年监测数据的大跨径拱桥上得到了验证。结果表明,在考虑运营荷载、参数不确定性和建模误差后,实测频率基本处于预测频率的95%置信区间内。最后,基于实测响应和预测响应置信区间提出了一个结构状态指标,并利用该指标检测出该桥的路面铺装更换过程。
Abstract
Existing finite element model updating (FEMU) methods for long-span bridges often fail to consider the effects of external loads on the structural dynamic properties, leading to a high degree of parameter variability in the updated model. Therefore, a hierarchical Bayesian FEMU method considering operational loads is proposed in this paper, which consists of the definition of the updating parameters considering temperature and traffic loads, response prediction considering uncertainties, and structural condition assessment. Firstly, the correlation analysis of the monitoring data is conducted to determine the loads considered in the theoretical frequency simulation. Then, a linear relationship between temperature and material elastic modulus, and a vehicle load estimation method based on Weigh-in-Motion (WIM) data are proposed to quantitatively consider the effect of operational loads on the structural natural frequencies in the FE model. Subsequently, a two-step Markov Chain Monte Carlo (MCMC) method and a response surface surrogate model are introduced to accelerate the updating process. The proposed method is validated on a long-span arch bridge with two-year-long monitoring data. The results show that the measured frequencies are generally within the 95% confidence interval of the predicted frequencies, considering the operational loads, parameter uncertainties, and modeling errors. Finally, a structural state indicator based on predicted and measured frequencies is proposed, which detects the pavement replacement process of the bridge.
关键词
有限元模型修正 /
层次贝叶斯 /
运营荷载 /
大跨径拱桥 /
结构状态评估
{{custom_keyword}} /
Key words
finite element model updating /
hierarchical Bayesian /
operational loads /
long-span arch bridge /
structural state assessment
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LI H, OU J. The state of the art in structural health monitoring of cable-stayed bridges [J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 43-67.
[2] 谢伟平, 曹晓宇, 肖伯强, 等. 基于模态测试的宽幅钢箱梁桥有限元模型建立、修正与分析 [J]. 振动与冲击, 2018, 37(01): 98-105.
XIE W, CAO X, XIAO B, et al. Finite element modelling, modification and analysis for wide steel box-girder bridges, based on modal tests [J]. Journal of Vibration and Shock, 2018, 37(01): 98-105.
[3] 王未寅, 王佐才, 辛宇, 等 基于模块化贝叶斯推理的随机非线性模型修正 [J]. 振动与冲击, 2023, 42(02): 79-88.
WANG W, WANG Z, XIN Y, et al. Stochastic nonlinear model updating based on modular Bayesian inference [J]. Journal of Vibration and Shock, 2023, 42(02): 79-88.
[4] ZHOU Y, SUN L. Effects of environmental and operational actions on the modal frequency variations of a sea-crossing bridge: A periodicity perspective [J]. Mechanical Systems and Signal Processing, 2019, 131: 505-23.
[5] YANG J H, LAM H F, AN Y. Development of a two-phase adaptive MCMC method for efficient Bayesian model updating of complex dynamic systems [J]. Eng Struct, 2022.
[6] HOU R, XIA Y. Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019 [J]. Journal of Sound and Vibration, 2021, 491: 115741.
[7] 王佐才, 丁雅杰, 戈壁, 等. 桥梁结构非线性模型修正研究综述 [J]. 交通运输工程学报, 2022, 22(02): 59-75.
WANG Z, DING Y, GE B, et al. A review on the study of nonlinear model correction for bridge structures [J]. Journal of Transportation Engineering, 2022, 22(02): 59-75.
[8] 翁顺, 左越, 朱宏平, 等. 基于子结构的有限元模型修正方法 [J]. 振动与冲击, 2017, 36(04): 99-104+38.
WENG S, ZUO Y, ZHU H, et al. Substructure-based finite element model correction method [J]. Journal of Vibration and Shock, 2017, 36(04): 99-104+38.
[9] 朱逸尘, 郑云文, 张立奎, 等. 基于高斯过程的桥梁代表性监测数据选取策略 [J]. 土木工程学报: 1-11.
ZHU Y, ZHENG Y, ZHANG L, et al. A representative bridge monitoring data selection strategy based on Gaussian process [J]. China civil engineering journal: 1-11.
[10] 孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望 [J]. 中国公路学报, 2019, 32(11): 1-20.
SUN L, SHANG Z, XIA Y. Current status and prospect of bridge structural health monitoring research in the context of big data [J]. Chinese Journal of Highway, 2019, 32(11): 1-20.
[11] BECK J L, KATAFYGIOTIS L S. Updating models and their uncertainties. I: Bayesian statistical framework [J]. Journal of Engineering Mechanics, 1998, 124(4): 455-61.
[12] LAM H-F, YANG J, AU S-K. Bayesian model updating of a coupled-slab system using field test data utilizing an enhanced Markov chain Monte Carlo simulation algorithm [J]. Engineering Structures, 2015, 102: 144-55.
[13] XIA Y, CHEN B, WENG S, et al. Temperature effect on vibration properties of civil structures: a literature review and case studies [J]. Journal of Civil Structural Health Monitoring, 2012, 2(1): 29-46.
[14] 周毅, 孙利民, 谢谟文. 运营环境作用对跨海大桥模态频率的影响研究 [J]. 工程力学, 2018, 35(S1): 34-9.
ZHOU Y, SUN L, XIE M. Study on the influence of operational environmental effects on modal frequencies of sea-crossing bridges [J]. Engineering Mechanics, 2018, 35(S1): 34-9.
[15] TENG J, TANG D-H, HU W-H, et al. Mechanism of the effect of temperature on frequency based on long-term monitoring of an arch bridge [J]. Structural Health Monitoring, 2021, 20(4): 1716-37.
[16] BEHMANESH I, MOAVENI B, LOMBAERT G, et al. Hierarchical Bayesian model updating for structural identification [J]. Mechanical Systems and Signal Processing, 2015, 64-65: 360-76.
[17] BEHMANESH I, MOAVENI B. Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification [J]. Journal of Sound and Vibration, 2016, 374: 92-110.
[18] SONG M, MOAVENI B, PAPADIMITRIOU C, et al. Accounting for amplitude of excitation in model updating through a hierarchical Bayesian approach: Application to a two-story reinforced concrete building [J]. Mechanical Systems and Signal Processing, 2019, 123: 68-83.
[19] SEDEHI O, PAPADIMITRIOU C, KATAFYGIOTIS L S. Probabilistic hierarchical Bayesian framework for time-domain model updating and robust predictions [J]. Mechanical Systems and Signal Processing, 2019, 123: 648-73.
[20] SEDEHI O, KATAFYGIOTIS L S, PAPADIMITRIOU C. Hierarchical Bayesian operational modal analysis: Theory and computations [J]. Mechanical Systems and Signal Processing, 2020, 140: 106663.
[21] EN-1993-1-2. Eurocode 3: Design of steel structures. Part 1-2: General rules- Structuralfire design [J]. Structural Fire Design, 2005.
[22] SUN L, LI Y, ZHANG W. Experimental Study on Continuous Bridge-Deflection Estimation through Inclination and Strain [J]. Journal of Bridge Engineering, 2020, 25(5): 04020020.
[23] MYERS R H, MONTGOMERY D C, ANDERSON-COOK C M. Response surface methodology: process and product optimization using designed experiments [M]. John Wiley & Sons, 2016.
[24] 任伟新, 陈华斌. 基于响应面的桥梁有限元模型修正 [J]. 土木工程学报, 2008, (12): 73-8.
REN W, CHEN H. Response surface based finite element modeling of bridges [J]. Journal of Civil Engineering, 2008, (12): 73-8.
[25] EN-1992-1-2. Eurocode 2: Design of concrete structures. Part 1-2: General rules-Structural fire design [J]. European Committee for Standardization, 2004.
[26] ESPERSSON M. Effect in the high modulus asphalt concrete with the temperature [J]. Construction and Building Materials, 2014, 71: 638-43
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}