一种低旁瓣水声换能器的设计与分析

张彬1, 童晖1, 2, 周博文1, 杨道军1, 黄帆1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 298-304.

PDF(1896 KB)
PDF(1896 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 298-304.
土木工程

一种低旁瓣水声换能器的设计与分析

  • 张彬1,童晖*1,2,周博文1,杨道军1,黄帆1
作者信息 +

Design and analysis of a low-sidelobe underwater acoustic transducer

  • ZHANG Bin1, TONG Hui*1,2, ZHOU Bowen1, YANG Daojun1, HUANG Fan1
Author information +
文章历史 +

摘要

低旁瓣宽带换能器可提高声呐系统的探测精度和抗干扰能力。本文综合采用1-3型压电复合材料压电相非均匀分布技术、匹配层多模耦合技术,设计了一款低旁瓣、宽带高频水声换能器。建立了其理论计算模型与仿真模型,结合数值计算、有限元仿真分析了频率与压电相体积百分比的变化规律、旁瓣级与圆环半径的变化规律。优选设计参数,完成制备并测量该款换能器,实测结果与仿真基本一致,试验验证了该设计思路可实现低旁瓣宽带换能器。换能器实测旁瓣级-23.9dB,较常规活塞阵最大旁瓣级降低6.3dB,中心频率300kHz,发射电压响应带宽(-3dB)达150kHz。

Abstract

Low-sidelobe broadband transducers can improve the detection accuracy and anti-jamming ability of sonar system. A low-sidelobe broadband and high frequency underwater acoustic transducer is designed,which incorporates 1-3 piezoelectric composite with non-uniform distribution piezoelectric phases technology and matched layer multimode coupling technology. Theoretical calculation model and simulation model were established. The variation laws of frequency with piezoelectric phase volume percentage and sidelobe level with ring radius were analyzed by numerical calculation and finite element simulation. According to the optimized design parameters, the transducer was fabricated and measured. The measured results are in good agreement with the simulation, providing experimental validation for the feasibility of achieving the low sidelobe broadband transducer. The measured sidelobe level is -23.9dB, exhibiting reduction 6.3dB compared to conventional piston array sidelobe level. The center frequency is 300kHz, while the transmission voltage response bandwidth (-3dB) spans across 150kHz.

关键词

低旁瓣 / 宽带 / 非均匀分布 / 1-3型压电复合材料 / 换能器

Key words

low sidelobe / broadband / non-uniform distribution / 1-3 piezoelectric composite / transducer

引用本文

导出引用
张彬1, 童晖1, 2, 周博文1, 杨道军1, 黄帆1. 一种低旁瓣水声换能器的设计与分析[J]. 振动与冲击, 2025, 44(1): 298-304
ZHANG Bin1, TONG Hui1, 2, ZHOU Bowen1, YANG Daojun1, HUANG Fan1. Design and analysis of a low-sidelobe underwater acoustic transducer[J]. Journal of Vibration and Shock, 2025, 44(1): 298-304

参考文献

[1] Szabo TL, Kaczkowski P. Essentials of ultrasound imaging [M]. United States: Acdemic Press, 2024, CHAPTER4: 79_97.
[2] LIU Yang, Zhu Ke, Shen Bing-zhong,et al. Broadband ultrasonic transducer based on textured lead-free NKN-based piezoceramics [J]. Ceramics International, 2023, 49(24): 40450-40456.
[3] BIAN Jia-cong, Wang Yan, Liu Zhen-jun,et al. Ultra-wideband underwater acoustic transducer with a gradient impedance matching layer [J]. Applied Acoustics, 2021, 175(2021) 107789: 1-8.
[4] 李洋. 基于宽带换能器的两路水声通信系统的研究[D]. 北
京:北京信息科技大学,2023.
LIU Yang. Research on two-way hydroacoustic communication
system based onbroadband transducer[D]. Beijing: Beijing Information Science and Technology University, 2023
[5] 莫喜平.水声换能器发展中的技术创新[J]. 陕西师范大学学报(自然科学版),2018,46(3): 1-13.
MO Xi-ping. Technical innovations with progress of underwater transducers [J]. Journal of Shanxi Normal University (Natural Science Edition), 2018, 46(3): 1-13.
[6] Mishra AK, Pradeep VS, Pradeep K,et al. Smart materials for ultrasonic piezoelectric composite transducer_ A short review [J]. Materials Today: Proceedings, 2022, 62(2022):2064-2069.
[7] ZHAO Heng-li, CHEN Zhao-jiang, ZHENG Guang-bin,et al. Characterization of high-field properties of 0.28PIN-0.42PMN-0.30PT single crystal/epoxy 1–3 composite for acoustic transducer applications [J]. Applied Acoustics, 2023, 214(2023)109704: 1-6
[8] 米徐慧,秦雷,廖擎玮. 1-1-3型压电复合材料的振动模态研究[J]. 振动与冲击, 2018,37(1): 223-228.
Mi Xu-hui, Qin lei, Liao Qing-wei. Vibration modes mode of 1-1-3 piezoelectric composites [J]. Journal of Vibration and Shock, 2018, 7(1): 223-228.
[9] 白玮,王佳荣,王婷,等. 基于 1-3 型压电单晶复合材料的高频宽带发射换能器[J]. 硅酸盐学报,2022,50(03): 556-562
BAI Wei, WANF Jia-rong, WANG Ting,et al. A high-frequency wideband transmitting transducer based on 1–3 piezoelectric single crystal composite[J]. Journal of The Chinese Ceramic Society, 2022,50(03): 556-562
[10] 莫喜平. 我国水声换能器技术研究进展与发展机遇[J]. 中国科学院院刊,2019,34(3): 272-282.
MO Xi-ping. Research progress and development opportunities of underwater acoustic transduce rtechnology in China[J]. Journal of Chinese Academy of Sciences, 2019, 34(3): 272-282.
[11] 卞加聪,王艳,刘振君,等. 高频声呐换能器梯度匹配层声学特性研究[J]. 振动与冲击, 2022, 41(7): 153-158.
BIAN Jia-cong, WANG Yan, LIU Zhen-jun,et al. Acoustic characteristics of gradient matching layer of high frequency sonar transducer. Journal of Vibration and Shock, 2022, 41(7): 153-158.
[12] 张凯,唐义政,仲林建,等. 双匹配层高频宽带换能器研究[J]. 声学技术,2017,36(4): 86-88
ZHANG Kai, TANG Yi-zheng, ZHONG Lin-jian,et al. The research of double matching layer high-frequency broad-band transducer [J]. Technical Acoustics, 2017, 36(4): 86-88 
[13] 童晖,周益明,王佳麟,等.高频宽带换能器研究[J].声学技术,2013,32(6): 524-527
TONG Hui, ZHOU Yi-ming, WANG Jia-lin,et al. Study of high frequency broadband transduce [J]. Technical Acoustics, 2013, 32(6): 524-527
[14] Nicolaides K, Jideani J. Evaluation of the Side lobe level properties of 1-3 and 2-2 piezocomposite sonar transducers with printed triangular shape electrodes in comparison to a convention transducer comprising of six PZT bars with analogue network [J]. Physics Procedia, 2015, 70(2015) 978-982
[15] CHENG Dong-xu, YUE Qing-wen Yue, HANG Hai,et al.The development of a flexible linear array transducer with high bandwidth [J], Sensors and Actuators: A. Physical, 2023, 363(2023)114749: 1-8
[16] Arun M, Ebenezar Jebarani MR. Design of phased array antenna with low side lobes[J]. Materials Today: Proceedings, 2023, 80(2023): 20150-2154
[17] Moshfeghi M. Side-lobe suppression for ultrasonic imaging arrays[J]. Ultrasonics, 1987, 25(6): 322-3527
[18] Muraveva OV, Muravev VV, Myshkin YV,et al. Laws of formation of grating lobes in the acoustic field of electromagnetic–acoustic transducers as a linear array of unidirectional conductors [J], NDT and E International, 2018, 93(2018): 40-56
[19] 于新胜,葛骑岐.用1-3压电复合材料设计低旁瓣水声换能器[J]. 青岛海洋大学学报, 2003, 33(5): 747-752
YU Xin-sheng, GE Qi-qi. Design of low minor lobe underwater sound transducer with 1-3 piezocomposite materials [J]. Journal of Ocean University of Qingdao, 2003, 33(5): 747-752
[20] 张彬,周博文,童晖,等. 一种低旁瓣圆形活塞高频换能器研究[J]. 声学技术,2021, 40(3): 435-438.
ZHANG Bin, ZHOU Bo-wen,TONG Hui,et al. Research on a low sidelobe circular piston high-frequency transducer[J]. Acoustic Technology, 2021, 40(3): 435-438.
[21] 魏彤,王宏伟,于肇贤. 一种低旁瓣非均匀圆形活塞换能器的设计[J]. 压电与声光, 2023,45(4): 601-605
WEI Tong, WANG Hong-wei, YU Zhao-xian. Design of a low side lobe non-unifom circular piston transducer [J]. Piezoelectrics & Acoustooptics, 2023, 45(4): 601-605
[22] 黄水兵,李勤博. 一种低旁瓣线列阵的设计[J]. 声学与电子工程,2022,4: 14-23
HUANG Shui-bing, Li Qin-bo. Design of a low sidelobe line array [J]. Acoustics and Electronics Engineering, 2022, 4: 14-23
[23] Mha PT, Maréchal P, Ntamack GE,et al. Homogenized electromechanical coefficients and effective parameters of 1–3 piezocomposites for ultrasound imaging transducers [J]. Physics Letters A, 2021, 408(2021)127493: 1-9
[24] ZHANG Bin, WANG Li-kun, QIN Lei,et al, Influence of volume fraction of piezoelectric ceramics on properties of PZT672/epoxy 1-3 piezocomposite [J]. Advanced Materials Research, 2014, 989-994(2014): 364-368
[25] 张凯,1-3型压电复合材料换能器研究[D]. 哈尔滨:哈尔滨工程大学, 2009
Zhang Kai. Research of 1-3 piezoelectric composite acoustic transducer [D]. Harbin: Harbin Engineering University, 2009
[26] 栾桂冬,张金铎,王仁乾. 压电换能器和换能器阵[M]. 修订版. 北京: 北京大学出版社, 2005
LUAN Gui-dong, ZHANG Jin-duo, WANG Ren-qian, Piezoelectric transducer and transducer array[M], Beijing, Beijing University press, 2005

PDF(1896 KB)

Accesses

Citation

Detail

段落导航
相关文章

/