振动作用下高效铣刀瞬时切削位姿偏置特性

杨帆1, 姜彬1, 成远清2, 毕刚2, 范丽丽1, 赵培轶1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 30-40.

PDF(6094 KB)
PDF(6094 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 30-40.
振动理论与交叉研究

振动作用下高效铣刀瞬时切削位姿偏置特性

  • 杨帆1,姜彬*1,成远清2,毕刚2,范丽丽1,赵培轶1
作者信息 +

Instantaneous cutting pose bias characteristics of high-efficiency milling cutter under vibration

  • YANG Fan1, JIANG Bin*1, CHENG Yuanqing2, BI Gang2, FAN Lili1, ZHAO Peiyi1
Author information +
文章历史 +

摘要

受铣削振动影响,铣刀及刀齿瞬时切削位姿复杂多变,导致铣刀与工件的瞬时接触关系不断改变,使得加工过渡表面形成过程具有多变性和不确定性。利用振动作用下的铣刀及刀齿瞬时切削位姿解算模型,揭示铣刀瞬时切削位姿偏置对加工过渡表面形成过程的影响特性;基于切削刃瞬时切削位姿与加工过渡表面的映射关系,利用表面形貌检测结果,获取铣刀瞬时位置偏置与角度偏置的变化特性;提出铣刀瞬时切削位姿偏置特性识别方法,利用铣刀瞬时切削位姿偏置的响应分析和表面形貌解算进行实验验证。结果表明,采用上述模型与方法,可有效识别出振动作用下铣刀瞬时切削位姿的偏置特性。

Abstract

Affected by the milling vibration, the instantaneous cutting position of the milling cutter and cutter teeth is complex and changeable, which leads to the continuous change of the instantaneous contact relationship between the milling cutter and the workpiece, which makes the formation process of the machining transition surface variable and uncertain. The instantaneous cutting position and attitude calculation model of milling cutter and cutter teeth under vibration was used to reveal the influence characteristics of instantaneous cutting attitude offset of milling cutter on the formation process of machining transition surface. Based on the mapping relationship between the instantaneous cutting position of the cutting edge and the machining transition surface, the change characteristics of the instantaneous position offset and angle offset of the milling cutter were obtained by using the surface morphology detection results. A method for identifying the characteristics of instantaneous cutting pose offset of milling cutter was proposed, and the response analysis of instantaneous cutting attitude offset of milling cutter and surface morphology solution were used for experimental verification. The results show that the above model and method can effectively identify the offset characteristics of the instantaneous cutting position of the milling cutter under vibration.

关键词

高进给铣刀 / 刀齿 / 铣削振动 / 瞬时切削位姿 / 加工过渡表面

Key words

high feed milling cutter / cutter tooth / milling vibration / instantaneous cutting pose / machining transition surface

引用本文

导出引用
杨帆1, 姜彬1, 成远清2, 毕刚2, 范丽丽1, 赵培轶1. 振动作用下高效铣刀瞬时切削位姿偏置特性[J]. 振动与冲击, 2025, 44(1): 30-40
YANG Fan1, JIANG Bin1, CHENG Yuanqing2, BI Gang2, FAN Lili1, ZHAO Peiyi1. Instantaneous cutting pose bias characteristics of high-efficiency milling cutter under vibration[J]. Journal of Vibration and Shock, 2025, 44(1): 30-40

参考文献

[1] 武民,马利杰,王占奎,等.不同振动方式下的钛合金超声振动铣削表面完整性研究[J].振动与冲击,2021,40(04):164-170.
Wu M, Ma L, Wang Z, etc. Study on surface integrity of ultrasonic vibration milling of titanium alloy under different vibration modes [J].Journal of Vibration and Shock, 2021,40 (04) : 164-170.
[2] 吴石,张轩瑞,刘献礼.基于CEEMD和GWO-SVR的铣削振动信号前瞻预测[J].振动与冲击,2022,41(11):199-209+234.
Wu S, Zhang X, Liu X. Prospective prediction of milling vibration signals based on CEEMD and GWO-SVR [J]. Journal of Vibration and Shock, 2022,41 (11) : 199-209+234.
[3] Zhao Z, Wang S, Wang Z, et al. Interference- and Chatter-free Cutter Posture Optimization Towards Minimal Surface Roughness in Five-axis Machining[J]. International Journal of Mechanical Sciences, 2020, 171: 105395.
[4] Jiang S , Sun Y .Stability analysis for a millin-g system considering multi-point-contact cross- axis mode coupling and cutter run-out effects[J].Mechanical Systems and Signal Processing, 2019,141:106452. 
[5] Makino M, Utsumi K, Sasahara H. Effect of Tool Posture on Chatter Vibration in Turn-milling[J]. Precision Engineering, 2023, 79: 335–348.
[6] Wilck I, Wirtz A, Merhofe T, et al. Minimisation of Pose-Dependent Regenerative Vibrations for 5-Axis Milling Operations[J]. Journal of Manufacturing and Materials Processing, 2021, 5(3): 99.
[7] Liu C, Wang L, Xu G, et al.Online reconstruction of surface topography along the entire cutting path in peripheral milling[J].International Journal of Mechanical Sciences, 2020, 185(1). 
[8] Miao H, Li C, Liu C, et al. Machined surface prediction and reliability analysis in peripheral milling operations,International Journal of Mechanical Sciences, 2024, 109193
[9] Jiang B, Li W, Zhao P, et al. Identification of Friction Behavior Variation in the Minor Flank of Square Shoulder Milling Cutters under Vibration. Applied Sciences. 2022; 12(8):4038. 
[10] Jiang H , Long X , Meng G .Study of the correlation between surface generation and cutting vibrations in peripheral milling[J].Journal of Materials Processing Technology,2008. 
[11] Dai Y, Li H, Liu H, et al. Dynamics and Stability Analysis of Five-axis Ball end Milling with Low Radial Immersion Considering Cutter Runout[J]. Journal of Manufacturing Processes, 2023, 92: 479–499.
[12] Fu G, Zheng Y, Zhu S, et al. Surface Texture Topography Evaluation and Classification by Considering the Tool posture Changes in Five-axis Milling[J]. Journal of Manufacturing Processes, 2023, 101: 1343–1361.
[13] Chen L, Tang J, Wu W, et al. Nonlinear Error Compensation Based on the Optimization of Swing Cutter Trajectory for Five-axis Machining[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(11–12): 4193–4208.
[14] 郭国强, 杨博宇, 李建华, 等. 基于切削运动学分析的铣削加工表面粗糙度预测方法研究[J]. 机械工程学报, 2023, 59(13): 314-324.
Guo G, Yang B, Li J, et al. Research on prediction method of milling surface roughness based on cutting kinematics analysis [J].Chinese Journal of Mechanical Engineering, 2023, 59(13): 314-324.
[15] 张洁, 刘成颖, 郑烽, 等. 基于铣削动力学的刀具强迫振动抑制研究[J]. 机械工程学报, 2018, 54(17): 94–99.
Zhang J, Liu C, Zhang F, et al. Research on tool forced vibration suppression based on milling dynamics [J]. Chinese Journal of Mechanical Engineering, 2018, 54(17): 94–99.
[16] Sun Y, Liu Y, Zheng M, et al. A Review on Theories/Methods to Obtain Surface Topography and Analysis of Corresponding Affecting Factors in the Milling Process[J]. The International Journal of Advanced Manufacturing Technology, 2023: 1-35.
[17] Zhang C, Guo S, Zhang H, et al. Modeling and Predicting for Surface Topography Considering Tool Wear in Milling Process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68: 2849-2860.
[18] Arizmendi M, Jiménez A. Modelling and Analysis of Surface Topography Generated in Face Milling Operations[J]. International Journal of Mechanical Sciences, 2019, 163: 105061.
[19] Jin S, Liu S, Zhang X, et al. A Unified Prediction Model of 3D Surface Topography in Face Milling Considering Multi-error Sources[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 705-717.

PDF(6094 KB)

Accesses

Citation

Detail

段落导航
相关文章

/