分频带极坐标格式处理的水下目标层析成像研究

戴文舒1, 鲍凯凯2, 张国军1, 张文栋3, 陈新华4

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 325-331.

PDF(1914 KB)
PDF(1914 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 325-331.
声学研究与应用

分频带极坐标格式处理的水下目标层析成像研究

  • 戴文舒*1,鲍凯凯2,张国军1,张文栋3,陈新华4
作者信息 +

Underwater targets tomographic imaging based on sub-frequency band processing with polar coordinate format

  • DAI Wenshu*1, BAO Kaikai2, ZHANG Guojun1, ZHANG Wendong3, CHEN Xinhua4
Author information +
文章历史 +

摘要

声层析成像模型慢时间维和快时间维空间分辨率均相同,仅取决于发射信号最高频率,分辨率较聚束合成孔径声纳性能更优。现有的水下层析成像多采用时域反投影算法,计算量大。本文根据投影切片理论,提出了一种分频带极坐标格式融合的波数域成像方法,将宽带发射下圆环空间谱的直角坐标系插值求逆傅里叶变换问题转换为单频点圆形空间谱的求逆后的融合问题,减小了常规宽带波数域圆环插值带来的估计误差,克服了圆环形空间谱进行插值逆变换时重建的目标分布函数为中空的问题,提高了计算效率,并且有效的抑制了单频波数域成像结果为贝塞尔函数时的高副瓣影响,相同条件下,较聚束合成孔径声纳成像精度有显著提高。

Abstract

The slow time and fast-time spatial resolution of the underwater acoustic tomography model is the same, only depends on the highest frequency of the transmitted signal, and the resolution is better than that of the spotlight synthetic aperture sonar. At present, the time-domain back-projection algorithm is often used in the underwater tomography, which requires a large amount of calculation. In this paper, a wavenumber domain imaging method based on the theory of projection slicing is proposed, which integrates polar coordinate formats transformation results of each sub frequency band. The inverse Fourier transform problem of Cartesian coordinate interpolation of annulus space spectrum is transformed into the fusion problem of inverse Fourier transform of circular space spectrum of all single frequency under broadband emission, which reduces the estimation error caused by conventional wide-band wave number domain circular interpolation. The problem that the reconstructed target distribution function is a hollow ring is solved and the calculation efficiency is improved . Moreover, the effect of high side lobe on the imaging results of single frequency wave-number domain is effectively suppressed which significantly improves the imaging accuracy compared with the spotlight synthetic aperture sonar under the same conditions. 

关键词

分频带处理 / 声层析 / 极坐标格式处理 / 波数域插值

Key words

Sub band processing / Acoustic reflection tomography / Polar format transformation / Wavenumber interpolation

引用本文

导出引用
戴文舒1, 鲍凯凯2, 张国军1, 张文栋3, 陈新华4. 分频带极坐标格式处理的水下目标层析成像研究[J]. 振动与冲击, 2025, 44(1): 325-331
DAI Wenshu1, BAO Kaikai2, ZHANG Guojun1, ZHANG Wendong3, CHEN Xinhua4. Underwater targets tomographic imaging based on sub-frequency band processing with polar coordinate format[J]. Journal of Vibration and Shock, 2025, 44(1): 325-331

参考文献

[1]. [1] 陈晓鹏, 周利生. 掩埋小目标声探测技术研究[J]. 声学技术,2012, 31(1): 30-35.
CHEN X P, ZHOU L S. Review of status of buried-object detection techniques [J]. Technical Acoustics, 2012, 31(1): 30-35. (In Chinese)
[2]. YU Y H, D'ALESSANDRO M M, TEBALDINI S, et al. Signal processing options for high resolution SAR tomography of natural scenarios[J]. Remote Sensing, 2020, 12(10): 1638-1645
[3]. GALUSHA A, DALE J, KELLER J M, et al. Deep convolutional neural network target classification for underwater synthetic aperture sonar imagery[C]. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIV. SPIE, 2019, 11012: 18-28 
[4]. 张鹏飞, 刘维, 江泽林, 刘纪元, 等.合成孔径声纳图像阴影增强方法研究[J]. 兵工学报, 2015, 36(2):305-312.
ZHANG P F, LIU W, JIANG Z L, LIU J Y, et al. Research on Shadow Enhancement for Synthetic Aperture Sonar Images [J]. Acta Armamentarii, 2015, 36(2):305-312. (In Chinese)
[5]. 翟京生,邹博,徐剑,高荪培. 一种高精度水下成像声呐性能实验研究[J]. 振动与冲击, 2018, 37(2): 223-227.
ZHAI Jingsheng, ZOU Bo, XU Jian, GAO Sunpei. Tests for performances of a high-resolution underwater imaging sonar. JOURNAL OF VIBRATION AND SHOCK, 2018, 37(2): 223-227.
[6]. PAN Y L, SHI D J, WANG H Q, et al. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening [J]. European Radiology, 2020, 30: 4107-4116.
[7]. HUANG C, HUANG S and ZHOU H. A Sound-Speed imaging method based on ray tomography [C]. OCEANS 2019 - Marseille, Marseille, France. 2019. 1-4.
[8]. MANI T.R, KUMAR O.V, KUMAR R. Application of ocean acoustic tomography in shape reconstruction of underwater objects [C]. International conference on information technology. 2014, 327-332.
[9]. FERGUSON B G, WYBER R J. Application of acoustic reflection tomography to sonar imaging [J]. J. Acoust. Soc. Am. 2005, 117 (5), 2914-2928.
[10]. 张祥坤. 高分辨圆迹合成孔径雷达成像机理及方法研究[D].中国科学院空间科学与应用研究中心,2007.
ZHANG X K. Study on Imaging Mechanism and Algorithm of High-resolution Circular Synthetic Aperture Radar [D]. Center for Space Science and Applied Research Chinese Academy of Sciences, 2007. (In Chinese)
[11]. 喻玲娟. 圆迹合成孔径雷达的信号仿真与处理算法研究[D].中国科学院电子研究所, 2012.
YU L J. Research on signal simulation and processing algorithm of circular synthetic aperture radar [D]. Institute of Electronics, Chinese Academy of Sciences, 2012(In Chinese)
[12]. LIN Y, HONG W, TAN W X, et al. Extension of Range Migration algorithm to Squint Circular SAR Imaging [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, July 2011, 8(4):543-548. 
[13]. MARSTON T M and KENNEDY J L. Volumetric Acoustic Imaging via Circular Multipass Aperture Synthesis [J]. IEEE Journal of Oceanic Engineering, 2016, 41(4):852-867.
[14]. 曾赛, 范威, 杜选民. 圆合成孔径声呐多点定位运动补偿[J]. 声学学报, 2021, 46(6): 1071-1081.
ZENG S, FAN W, DU X M. Multilateration motion compensation for circular synthetic aperture sonar imaging[J]. Acta Acustica, 2021, 46(6): 1071-1081. (In Chinese)
[15]. 姚永红, 张旭. 一种基于PFA的多子阵聚束合成孔径声呐成像方法[J]. 声学技术, 2022, 41(6): 923-928. 
YAO Y H, ZHANG X. A PFA based imaging method for multiple receiver spotlight synthetic aperture sonar [J].Technical Acoustics, 2022, 41(6): 923-928.
[16]. 汪海涛, 唐劲松, 苑秉成. 多子阵 SAS 逐线成像算法研究[J]. 哈尔滨工程大学学报, 2009, 30(7): 820-823.
WANG H T, TANG J S, YUAN B C. Research on a multi-receiver synthetic aperture sonar imaging algorithm based on FFT [J]. Journal of Harbin Engineering University, 2009, 30(7): 820-823. (In Chinese)
[17]. 陈敬军, 曾赛. 水下小目标合成孔径声呐层析成像技术研究[J]. 声学技术, 2023, 42(4): 440-445. 
CHEN J J, ZENG Sai. Research on synthetic aperture sonar tomographic imaging for small underwater targets [J]. Technical Acoustics, 2023, 42(4): 440-445. (In Chinese)
[18]. 邵鹏飞,祝献,邹丽娜. 一种基于投影层析方法的水下目标成像方法[J]. 声学技术, 2016, 35(4):314-318.
SHAO P F, ZHU X, ZOU L N. A projection tomography based method for underwater target imaging [J]. Technical Acoustics, 2016, 35(4):314-318. (In Chinese)
[19]. 林珲, 马培峰, 陈旻, 等. SAR 层析成像的基本原理、关键技术和应用领域[J]. 测绘地理信息, 2015, 40(3): 1-5.
LIN H, MA P F, CHEN M, et al. Basic principles, Key techniques and applications of tomographic SAR imaging[J]. Journal of geomatics, 2015, 40(3): 1-5. (In Chinese)
[20]. 曾赛, 杜选民, 范威. 采用垂直短阵的水下小目标三维层析成像方法[J]. 哈尔滨工程大学学报, 2020, 10(41): 1584-1602.
ZENG S, DU X M, FAN W. Three-dimensional tomography method of underwater small target using vertical array [J]. Journal of Harbin Engineering University, 2020, 10(41): 1584-1602. (In Chinese)
[21]. 孔辉,范威,李颂文. 圆合成孔径声纳时域和波数域成像方法比较[J]. 声学技术, 2017, 36(6):269-270.
KONG H,FAN W, LI S W. Comparison of time domain and wave number domain imaging methods for circular synthetic aperture sonar [J]. Technical Acoustics, 2017, 36(6):269-270. (In Chinese)
[22]. 徐国军, 张明敏,程广利,等. 极坐标格式算法在水下目标成像中的研究[J]. 声学技术, 2008,27(4):516-518.
XU G J, ZHANG M M, CHENG G L, et al. Research on underwater target imaging by PFA [J]. Technical Acoustics, 2008, 27(4): 516-518. (In Chinese)
[23]. 戴文舒.水下微弱目标探测和信号处理技术[M].西北工业大学出版社,2024. 

PDF(1914 KB)

Accesses

Citation

Detail

段落导航
相关文章

/