基于声学黑洞的声学迷宫结构的优化设计

程祎博, 王晓明, 梅玉林

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 332-342.

PDF(3197 KB)
PDF(3197 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 332-342.
声学研究与应用

基于声学黑洞的声学迷宫结构的优化设计

  • 程祎博,王晓明,梅玉林*
作者信息 +

Optimization design of acoustic labyrinth structure based on acoustic black hole

  • CHENG Yibo, WANG Xiaoming, MEI Yulin*
Author information +
文章历史 +

摘要

结合理论计算、有限元仿真和实验测量,研究了基于声学黑洞的声学迷宫结构的优化设计方法,给出了具有5.01和7.75个倍频程的小尺寸、宽频吸声结构。首先,基于传递矩阵法,建立声学黑洞的数学模型,计算声学黑洞的反射系数,并将理论计算结果与有限元仿真结果进行对比。然后,基于声学黑洞的导纳变化规律,设计单、双旁支管声学迷宫结构,通过优化设计,实现迷宫结构和声学黑洞导纳的匹配。最后,基于声学迷宫结构导纳的匹配结果,应用模拟退火算法构造优化模型,获得了宽频吸声的小尺寸声学迷宫结构,并打印3D样件进行实验验证。研究结果表明:应用双旁支管声学迷宫代替声学黑洞管道中的环腔,经优化设计,旁支管迷宫和声学黑洞的导纳可以实现完美匹配,并可以在保持吸声性能不变的前提下,实现结构的小尺寸设计,优化后的结构有效吸声带宽是优化前的13.36倍,倍频程是优化前的3.64倍。

Abstract

Combined with theoretical calculation, finite element simulation and experimental measurement, the optimization design method of acoustic maze structure based on acoustic black hole is studied, and a small-size and broadband sound absorption structure with 5.01 and 7.75octaves is given.First, based on the transfer matrix method, the mathematical model of acoustic black hole is established, the reflection coefficient of acoustic black hole is calculated, and the theoretical calculation results are compared with the finite element simulation results.Then, based on the admittance variation law of the acoustic black hole, the single and double side branch acoustic maze structures are designed. By optimizing the design, the matching of the maze structure and the admittance of the acoustic black hole is realized.Finally, based on the matching results of the admittance of the acoustic maze structure, the simulated annealing algorithm is used to construct the optimization model, and the small-sized acoustic maze structure with broadband sound absorption is obtained, and the 3D sample is printed for experimental verification.The results show that the double side branch pipe acoustic maze is used to replace the ring cavity in the acoustic black hole pipeline. After optimization, the admittance of the side branch pipe maze and the acoustic black hole can achieve perfect matching, and the small size design of the structure can be realized under the premise of maintaining the sound absorption performance. The effective sound absorption bandwidth of the optimized structure is 13.36 times that before optimization, and the octavesare3.94 times those before optimization.

关键词

声学黑洞 / 声学迷宫 / 传递矩阵 / 有限元 / 实验测量 / 反射系数

Key words

Acoustic black hole;acoustic labyrinth structure;transfer matrix;finite element / experimental measurement;reflection coefficient

引用本文

导出引用
程祎博, 王晓明, 梅玉林. 基于声学黑洞的声学迷宫结构的优化设计[J]. 振动与冲击, 2025, 44(1): 332-342
CHENG Yibo, WANG Xiaoming, MEI Yulin. Optimization design of acoustic labyrinth structure based on acoustic black hole[J]. Journal of Vibration and Shock, 2025, 44(1): 332-342

参考文献

[1]吴九汇,马富银,张思文等.声学超材料在低频减振降噪中的应用评述[J].机械工程学报,2016,52(13):68-78.
Wu Jiuhui, Ma Fuyin, Zhang Siwen, et al. Review of the application of acoustic metamaterials in low-frequency vibration and noise reduction [ J ]. Journal of Mechanical Engineering, 2016,52 ( 13 ) : 68-78.
[2]Bozkurt S T .Preparation of Industrial Noise Mapping and Improvement of Environmental Quality[J].Current Pollution Reports,2021,7(3):1-19.
[3]Thomas L ,P S H ,Koen N V , et al.Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures.[J].Science (New York, N.Y.),2020,369(6509):1338-1343.
[4]于丽新,李响,齐笑言等.吸声材料及声能转化研究现状分析[J].节能技术,2017,35(02):156-161+187.
Yu Lixin, Li Xiang, Qi Xiaoyan, etc. Analysis of research status of sound absorption materials and sound energy conversion [ J ]. Energy-saving technology, 2017,35 ( 02 ) : 156-161 + 187.
[5]季宏丽,黄薇,裘进浩,等.声学黑洞结构应用中的力学问题[J].力学进展,2017,47(00):333-384.
Ji Hongli, Huang Wei, Qiu Jinhao, etc. Mechanical problems in the application of acoustic black hole structures [J]. Advances in Mechanics, 2017,47 ( 00 ) : 333-384.
[6]GUASCH O, ARNELA M, SANCHEZ-MARTIN P. Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations[J]. JOURNAL OF SOUND AND VIBRATION, 2017,395: 65-79.
[7]Tang L ,Cheng L ,Ji H , et al.Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model[J].Journal of Sound and Vibration,2016,374172-184.
[8]Deng J ,Guasch O ,Zheng L .Ring-shaped acoustic black holes for broadband vibration isolation in plates[J].Journal of Sound and Vibration,2019,458109-122.
[9]ČervenkaM.,BednaříkM..On the role of resonance and thermoviscous losses in an implementation of “acoustic black hole” for sound absorption in air[J].Wave Motion,2022,114.
[10]赵晓宇,吴卫国,林永水.波导吸振器的低频减振设计和应用[J].力学学报,2023,55(11):2636-2646.
Zhao Xiaoyu, Wu Weiguo, Lin Yongshui. Low frequency vibration reduction design and application of waveguide vibration absorber [ J ].Journal of Mechanics, 2023, 55 ( 11 ) : 2636-2646.
[11]魏建红,向阳,廖琳等.声学黑洞在圆柱壳上的应用及结构优化研究[J].噪声与振动控制,2023,43(05):59-65.
Wei Jianhong, Xiangyang, Liao Lin and so on. Application and structural optimization of acoustic black holes on cylindrical shells [ J ].Noise and vibration control, 2023,43 ( 05 ) : 59-65.
[12]余勇花,吴天歌,杨淇等.基于声学黑洞的复合隔声结构声学特性研究及试验[J].声学技术,2023,42(04):509-514.
Yu Yonghua, Wu Tiange, Yang Qi, etc. Research and experiment on acoustic characteristics of composite sound insulation structure based on acoustic black hole [J].Acoustic technology, 2023,42 ( 04 ) : 509-514.
[13] Zhang, L.L., G. Kerschen and L. Cheng, Nonlinear features and energy transfer in an Acoustic Black Hole beam through intentional electromechanical coupling. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022. 177.
[14] Zhang, L.L., et al., Enhanced energy transfer and multimodal vibration mitigation in an electromechanical acoustic black hole beam. JOURNAL OF SOUND AND VIBRATION, 2023. 561.
[15]Rebecca B O P .Finite Element Simulations of Acoustic Black Holes as Lightweight Damping Treatments for Automotive Body Panels with Application to Full Vehicle Interior Wind Noise Predictions[J].INTER - NOISE and NOISE - CON Congress and Conference Proceedings,2016,253(3):5210-5221.
[16]Xiaofei D ,Qidi F ,Jianrun Z , et al.Numerical and Experimental Study on Suppression Effect of Acoustic Black Hole on Vibration Transmission of Refrigerator Compressor[J].Applied Sciences,2021,11(18):8622-8622.
[17]MaF ,WuH J ,HuangM , et al.Cochlear bionic acoustic metamaterials[J].Applied Physics Letters,2014,105(21):213702.
[18]Zixian L ,Jensen L .Extreme acoustic metamaterial by coiling up space.[J].Physical review letters,2012,108(11):114301.
[19]Yangbo X ,Bogdan-Ioan P ,Lucian Z , et al.Measurement of a broadband negative index with space-coiling acoustic metamaterials.[J].Physical review letters,2013,110(17):175501.
[20]Yangbo X ,Wenqi W ,Huanyang C , et al.Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.[J].Nature communications,2014,5(1):5553.
[21]Li ,Yong,Assouar , et al.Acousticmetasurface-based perfect absorber with deep subwavelength thickness[J].Applied physics letters,2016,108(6):063502-1-063502-4.
[22]侯明明,吴九汇.迷宫型声学超表面可调参数及其全相位调节[J].西安交通大学学报,2018,52(05):29-37.
Hou Mingming, Wu Jiuhui. Tunable parameters and all-phase adjustment of labyrinth acoustic metasurface [ J ].Journal of Xi 'an Jiaotong University, 2018,52 ( 05 ) : 29-37.
[23]Cai X ,Guo Q ,Hu G , et al.Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonator•s[J].Applied Physics Letters,2014,105(12):121901.
[24]杜功焕,朱哲民,龚秀芬.声学基础[M].南京.南京大学出版社,1981.
Du Gonghuan, Zhu Zhemin, Gong Xiufen. Acoustic basis [M].Nanjing. Nanjing University Press, 1981.
[25]MIRONOV M A, PISLYAKOV V V. One-Dimensional Acoustic Waves in Retarding Structures with Propagation Velocity Tending to Zero[J]. Acoustical physics, 2002,48(3): 347-352.
[26]GUASCH O, ARNELA M, SANCHEZ-MARTIN P. Transfer matrices to characterize linear and quadratic acoustic black holes in duct terminations[J]. JOURNAL OF SOUND AND VIBRATION, 2017,395: 65-79.
[27]Chiu M. Numerical assessment for a broadband and tuned noise using hybrid mufflers and a simulated annealingmethod[J]. Journal of Sound and Vibration, 2013,332(12):2923-2940.

PDF(3197 KB)

Accesses

Citation

Detail

段落导航
相关文章

/