浅水晃荡载荷特性与近似计算方法研究

袁心怡, 苏焱

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 51-60.

PDF(5390 KB)
PDF(5390 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 51-60.
振动理论与交叉研究

浅水晃荡载荷特性与近似计算方法研究

  • 袁心怡,苏焱*
作者信息 +

Shallow water sloshing load characteristics and approximate calculation method

  • YUAN Xinyi, SU Yan*
Author information +
文章历史 +

摘要

本文利用高精度的Boussinesq方程建立数值模型,并结合实验手段,深入分析了矩形水箱内部浅水晃荡运动的载荷特性。研究结果显示,当无因次外部激励频率接近液体固有频率时,晃荡运动与载荷时历曲线表现出相似的非线性特征,随着激励频率的增加,呈现出多种不同的形式。通过对载荷时历曲线进行傅里叶分析,得到了不同外部激励频率下载荷的频域分布特征。基于晃荡载荷与自由液面波高频响曲线的相似性以及载荷特性的分析结果,建立了晃荡载荷的近似计算方法。该方法在不同水深及激励幅值下表现出优良的泛化性能,能够修正共振状态下线性近似对壁面载荷的过高估计,使跳跃频率处误差减少了50%以上。利用所提出的近似方法能够在已知波高的情况下快速估计壁面载荷,为工程设计提供技术支持。

Abstract

This study utilizes a high-precision Boussinesq equation to establish a numerical model, combined with experimental methods, to deeply analyze the load characteristics of shallow water sloshing motion within a rectangular tank. The research results indicate that when the dimensionless external excitation frequency approaches the natural frequency of the liquid, the sloshing motion and load time history curves exhibit similar nonlinear characteristics. As the excitation frequency increases, various different forms emerge. By performing Fourier analysis on the load time history curves, the frequency domain distribution characteristics of the load under different external excitation frequencies were obtained. Based on the similarity between the sloshing load and the high-frequency response curve of the free liquid surface wave height, as well as the analysis results of the load characteristics, an approximate method of the sloshing load was established. This approach demonstrates excellent generalization performance under different water depths and excitation amplitudes, reducing the overestimation of wall loads by linear approximations in resonance states, with errors at jump frequencies reduced by more than 50%. The proposed approximate model can quickly estimate wall loads under known wave heights, providing a theoretical basis for engineering design.

关键词

浅水晃荡 / 载荷特性 / 近似方法 / 模型实验

Key words

shallow water sloshing / load characteristics / approximation methods / model experiments

引用本文

导出引用
袁心怡, 苏焱. 浅水晃荡载荷特性与近似计算方法研究[J]. 振动与冲击, 2025, 44(1): 51-60
YUAN Xinyi, SU Yan. Shallow water sloshing load characteristics and approximate calculation method[J]. Journal of Vibration and Shock, 2025, 44(1): 51-60

参考文献

[1] Hill D F. Transient and steady-state amplitudes of forced waves in rectangular basins[J]. Physics of Fluids, 2003, 15(6): 1576-1587.
[2] Karimi M R, Kosinski C, Brosset L. Comparison of Sloshing Model Test Results at Scales 1:10 and 1:40[C]. Proceedings of the Twenty-third (2013) International Offshore and Polar Engineering, 2013.
[3] M.A. Xue, J.H. Zheng, P.Z. Lin, X.L. Yuan. Experimental study on vertical baffles of different configurations in suppressing sloshing pressure[J]. Ocean Engineering, 2017, 136:178-189.
[4] WEI Z , Yue Q , Ruan S .An Experimental Investigation of Liquid Sloshing Impact Load in a Rectangular Tank[C]//International offshore and polar engineering conference, 2012.
[5] LIU, D., & Lin, P. A numerical study of three-dimensional liquid sloshing in tanks.[J] Journal of Computational physics, 2008, 227(8), 3921-3939.
[6] 王庆丰,徐刚,王树齐,等.去奇异边界元方法在液舱晃荡模拟中的应用[J].振动与冲击,2018,37(19):69-73+96.
WANG Qingfeng, XU Gang, WANG Shuqi, et al. Application of de-singularized boundary element method in simulation of a liquid tank sloshing[J]. Journal of Vibration and Shock, 2018, 37(19): 69-73+96.
[7] Battaglia, L., Cruchaga, M., Storti, M., et al. Numerical modelling of 3D sloshing experiments in rectangular tanks[J]. Applied Mathematical Modelling, 2018, 59, 357-378.
[8] Changhong, Hu., Mohamed, M., Kamra.. An unstructured mesh method for numerical simulation of violent sloshing flows[J]. Journal of Hydrodynamics, 2020.
[9] Chester W. Resonant oscillations of water waves I. Theory[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1968, 306(1484): 5-22.
[10] Lepelletier T G, Raichlen F. Nonlinear oscillations in rectangular tanks[J]. Journal of Engineering Mechanics, 1988, 114(1): 1-23.
[11] Antuono M, Bouscasse B, Colagrossi A, et al. Two-dimensional modal method for shallow-water sloshing in rectangular basins[J/OL]. Journal of Fluid Mechanics, 2012, 700: 419-440.
[12] Antuono M, Bardazzi A, Lugni C, et al. A shallow-water sloshing model for wave breaking in rectangular tanks[J]. Journal of Fluid Mechanics, 2014, 746: 437-465.
[13] Grotle E L, Bihs H, Aesoy V. Experimental and numerical investigation of sloshing under roll excitation at shallow liquid depths[J]. Ocean Engineering, 2017, 138: 73-85.
[14] 薛米安, 陈奕超, 苑晓丽, 等. 低载液率液体晃荡冲击压力的试验研究[J]. 振动与冲击, 2019, 38(14): 239-245+275.
XUE Mian, CHEN Yichao, YUAN Xiaoli, et al. Experimental study on the impact pressure of sloshing liquid with low filling level[J]. Journal of Vibration and Shock, 2019, 38(14): 239-245+275.
[15] Gurusamy S, Kumar D. Frequency-bounds of sloshing wave systems in a square-base liquid tank[J]. Ocean Engineering, 2021, 220: 108478.
[16] 孔耀华,齐野含,李厚蓉,等.浅水液舱侧壁开孔箱体抑制晃荡的试验研究[J/OL].工程力学,2024:1-10.
KONG Yaohua, QI Ye-han, LI Hourong, et al. Experimental study on liquid sloshing suppression of sidewall perforated box in shallow water tank[J/OL]. Engineering Mechanics, 2024, 1-10.
[17] SU Y, YUAN X Y, LIU Z Y. Numerical researches of three-dimensional nonlinear sloshing in shallow-water rectangular tank[J]. Applied Ocean Research, 2020, 101: 102256. 
[18] Bingham H B, Madsen P A, Fuhrman D R. Velocity potential formulations of highly accurate Boussinesq-type models[J]. Coastal Engineering, 2009, 56(4): 467-478. 
[19] SU Y. Numerical model of energy dissipation and shallow-water sloshing motions in tank under different coupled excitations[J]. Journal of Marine Science and Technology, 2021, 26(4): 1038-1050.

PDF(5390 KB)

Accesses

Citation

Detail

段落导航
相关文章

/