动态多群粒子群优化稀疏分解在薄涂层超声测厚中的应用

刘易奕1, 黄华1, 王志刚2, 王海涛3, 卢超1, 李秋锋1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 61-69.

PDF(3789 KB)
PDF(3789 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 61-69.
振动理论与交叉研究

动态多群粒子群优化稀疏分解在薄涂层超声测厚中的应用

  • 刘易奕1,黄华1,王志刚2,王海涛3,卢超1,李秋锋*1
作者信息 +

Application of dynamic multi-swarm particle swarm optimization and sparse decomposition in ultrasonic thickness measurement of thin coating#br#

  • LIU Yiyi1, HUANG Hua1, WANG Zhigang2, WANG Haitao3, LU Chao1, LI Qiufeng*1
Author information +
文章历史 +

摘要

基于稀疏分解匹配追踪算法将装配式钢结构防护涂层超声检测信号表示在过完备Gabor时频库中,进一步提取涂层的时域信息来获得涂层的厚度信息。针对匹配追踪算法复杂度高、计算量庞大的问题,利用动态多群粒子群算法收敛快寻优能力强的特性对匹配追踪算法进行优化。基于混沌策略生成惯性权重,并将学习因子和惯性权重通过三角函数关系联立在一起,而在位置更新中增加时间因子和混沌扰动策略的影响因素,平衡了算法的局部寻优和全局寻优能力。仿真与实验表明,改进后的算法检测精度得到较大提升,能够满足实际应用,并且极大地提升了稀疏分解运算的效率,与金相检测结果对比,防火涂层检测相对误差为-4.65%,防腐涂层的检测相对误差为1.33%。 

Abstract

Based on the sparse decomposition matching pursuit algorithm, the ultrasonic testing signal of the protective coating of fabricated steel structures is represented in the over complete Gabor time-frequency library, and the time domain information of the coating is further extracted to obtain the thickness information of the coating. In order to solve the problem of high complexity and huge computation of the matching pursuit algorithm, the dynamic multi swarm particle swarm optimization algorithm is used to optimize the matching pursuit algorithm. The inertia weights are generated based on the chaotic strategy, and the learning factor and inertia weights are coupled together with an over trigonometric relationship, while the time factor and the influence factor of the chaotic perturbation strategy are added in the position update, balancing the local search and global search ability of the algorithm. Simulations and experiments show that the improved algorithm has greatly improved the detection accuracy, which can satisfy the practical applications, and has greatly improved the efficiency of the sparse decomposition operation, and compared with the metallographic inspection results, the relative error of the detection of the fireproof coating is -4.65%, and that of the detection of the anticorrosive coating is 1.33%.

关键词

防护涂层 / 超声检测 / 稀疏分解 / 混沌扰动 / 动态多群粒子群算法

Key words

protective coatings / ultrasonic testing / sparse decomposition / chaos disturbance / dynamic multi-group particle swarm algorithm

引用本文

导出引用
刘易奕1, 黄华1, 王志刚2, 王海涛3, 卢超1, 李秋锋1. 动态多群粒子群优化稀疏分解在薄涂层超声测厚中的应用[J]. 振动与冲击, 2025, 44(1): 61-69
LIU Yiyi1, HUANG Hua1, WANG Zhigang2, WANG Haitao3, LU Chao1, LI Qiufeng1. Application of dynamic multi-swarm particle swarm optimization and sparse decomposition in ultrasonic thickness measurement of thin coating#br#[J]. Journal of Vibration and Shock, 2025, 44(1): 61-69

参考文献

[1] 彭勃,周树学,武利民,等.室外用超薄钢结构防火涂料的研制[J].电镀与涂饰,2009,28(02):46-49.
Peng B, Zhou S X, Wu L M, et al. Exploitation of ultrathin fire-retardant coating material for exterior steel construction[J]. Electroplating & Finishing, 2009,28(02):46-49.
[2] Li Q, Zhang X, Zhu J, et al. Sensing Signal Analysis and Imaging Processing with High Frequency Ultrasonic Testing for Fe-based Amorphous Coatings[J]. IEEE Sensors Journal. 2022,22,17455-17463.
[3] 张昱,陈尧,李秋锋,等.基于波包分解技术的铁基非晶涂层厚度超声检测与评价[J].振动与冲击, 2021, 40(12):38-45.
Zhang Y, Chen Y, Li Q F, et al. Ultrasonic Test and Evaluation for Iron-based Amorphous Coatings Based on wave packet Decomposition[J]. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(12):38-45.
[4] WANG G, CHEN Y, LI Q, et al. Ultrasonic computerized tomography imaging method with combinatorial optimization algorithm for concrete pile foundation[J]. IEEE Access, 2019,7:132395-132405.
[5] Liu Y; Zhou R, Wang Z, et al. Ultrasonic Detection of Aliased Signal Separation Based on Adaptive Feature Dictionary and K-SVD Algorithm for Protective Coatings of Assembled Steel Structure[J]. Coatings 2023, 13, 1239.
[6] 林莉,聂颖,李喜孟.基于Marr小波分析的薄层超声检测[J].材料工程,2007(02):39-41+45.
Lin L, Nie Y, Li X M. Ultrasonic Testing of Thin Layered Structure Based on Marr Wavelet Analysis[J]. Materials Engineering,2007(02):39-41+45.
[7] 郑金华,高鸿波,张士晶,等.基于小波分析的热障涂层厚度超声检测[J].失效分析与预防,2014,9(03):136-140+150. 
Zheng J H, Gao H B, Zhang S J, et al. Ultrasonic Testing for Thinkness of Thermal Barrier Coatings Based on Wavelet Analysis[J]. Failure Analysis and Prevention,2014,9(03):136-140+150.
[8] Mallat S,Zhang Z.Matching pursuit with time-frequency dictionaries[J].IEEE Trans on Signal Processing, 1993, 41(12):3397-3415.
[9] 齐爱玲,马宏伟,刘涛.基于改进人工鱼群优化算法的超声信号稀疏分解[J].仪器仪表学报,2009,30(12):2480-2484.
Qi A L, Ma H W, Liu T. Ultrasonic signal sparse decomposition based on improved artificial fish swarm optimization algorithm[J]. Chinese Journal of Scientific Instrument, 2009,30(12):2480-2484.
[10] 刘易奕,陈尧,李秋锋,等. 基于遗传算法优化稀疏分解的防护涂层测厚研究[J]. 振动与冲击, 2024, 43(11): 279-287.
LIU Yiyi, CHEN Yao, LI Qiufeng, et al. Protective coating thickness measurement based on genetic algorithm optimization in sparse decomposition. JOURNAL OF VIBRATION AND SHOCK, 2024, 43(11): 279-287.
[11] Liang J.J., Suganthan P.N. Dynamic multi-swarm particle swarm optimizer[C]. IEEE Swarm Intelligence Symposium, 2005(129): 124–129 .
[12] 陈礼顺,张晗,陈雪峰,等.基于低秩稀疏分解算法的航空锥齿轮故障诊断[J].振动与冲击,2020,39(12):103-112.
Chen L S, Zhang H, Chen X F, et al. Sparse Fault diagnosis of aero-engine bevel gear based on a low rank sparse model[J]. JOURNAL OF VIBRATION AND SHOCK, 2020,39(12):103-112.
[13]谢惠华,黎明,王艳等.基于DE-Gabor特征的人脸表情识别[J].南昌航空大学学报(自然科学版), 2021, 35(02):82-91+124.
Xie H H, Li M, Wang Y, et al. Facial Expression Recognition Based on DE-Gabor Feature[J]. Journal of Nanchang Hangkong University: Natural Sciences, 2021,35(02):82-91+124.
[14] Song L J, Shi J, Pan A D, et al. A Dynamic Multi-Swarm Particle Swarm Optimizer for Multi-Objective Optimization of Machining Operations Considering Efficiency and Energy Consumption[J]. Energies,2020(13):2598-2616.
[15] Laskar N M,Guha K,Chatterjee I,et al.HWPSO: A new hy-brid whale-particle swarm optimization algorithm and itsapplication in electronic design optimization problems[J].Applied Intelligence,2018( 2) : 533 -542.
[16] 郁纪,肖文波,吴华明,等.太阳能无人机中光伏发电最大功率点跟踪算法的研究[J].南昌航空大学学报(自然科学版), 2023,37(01):19-28.
Yu J, Xiao W B, Wu H M, et al. Research on GMPPT Tracking of Solar-powered UAV[J]. Journal of Nanchang Hangkong University: Natural Sciences, 2023,37(01):19-28.
[17]吴永红,曾志高,邓彬.基于惯性权重和学习因子动态调整的粒子群算法[J].湖南工业大学学报, 2021, 35(01): 91-96.
Wu Y H, Zeng Z G, Deng B. Particle Swarm Optimization Algorithm Based on Dynamic Adjustment of Inertial Weight and Learning Factors[J].Journal of Hunan University of Technology, 2021,35(01):91-96.
[18]曾艳阳,冯云霞,赵文涛.基于logistic映射的自适应变尺度混沌粒子群算法[J].系统仿真学报, 2017, 29(10): 2241-2246.
Zeng Y Y, Feng Y X, Zhao W T. Adaptive Mutative Scale Chaos Particles Swarm Optimization Based on Logistic Mapping[J]. Journal of System Simulation, 2017,29(10): 2241-2246.
[19]杨雪娟,陈果,张震等.航空发动机涡轮叶片热障涂层结构状态超声检测方法研究[J].南昌航空大学学报(自然科学版),2013,27(04):59-64.
YANG Xuejuan, CHEN Guo, ZHAN Zhen, et al. Ultrasonic Test for Thermal Barrier Coatings of Aeroengine Turbine Blade[J]. Journal of Nanchang Hangkong University(Natural Sciences), 2013, 27(04): 59-64.
[20]肖义平,赵云峰.基于混沌映射和高斯扰动的改进粒子群算法MPPT控制策略研究[J].电源学报,2023:1-13.
Xiao Y P, Zhao Y F. Research on MPPT Control Strategy Based on Improved PSO Algorithm Using Chaotic Mapping and Gaussian Perturbation[J]. Journal of Power Supply, 2023:1-13.
[21]Zhang G M, Harvey D M, Braden D R. Advanced acoustic micro imaging using sparse signal representation for the evaluation of microelectronic packages[J].IEEE Trans Adv Packag,2006,29(2):271-283.
[22] 李秋锋,马辉聪,陈文生,等.改进层析算法在混凝土超声成像中的应用[J].失效分析与预防,2012,7(02):104-108.
Li Q F, Ma H C, Chen W S, et al. Application of Improved Computerized Tomography Algorithm in Concrete Ultrasonic Imaging[J]. Failure Analysis and Prevention, 2012,7(02):104-108.
[23] 顾建飞,苏明旭,蔡小舒.基于COMSOL的超声层析成像仿真及图像重建[J].声学技术,2016,35(03):231-234.
Gu J F, Su M X, Cai X S. The COMSOL based sound filed simulation and image reconstruction of ultrasonic tomography[J]. Technical Acoustics, 2016,35(03):231-234.

PDF(3789 KB)

148

Accesses

0

Citation

Detail

段落导航
相关文章

/