基于谱比法的近海地震动S-net台站场地分类研究

王时1, 2, 王想1, 2, 胡磊3, 周旭彤4

振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 90-101.

PDF(6189 KB)
PDF(6189 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (1) : 90-101.
振动理论与交叉研究

基于谱比法的近海地震动S-net台站场地分类研究

  • 王时1,2,王想*1,2,胡磊3,周旭彤4
作者信息 +

Site classification for offshore ground motion S-net stations based on spectral ratio method

  • WANG Shi1,2, WANG Xiang*1,2, HU Lei3, ZHOU Xutong4
Author information +
文章历史 +

摘要

近海台站往往难以获得台站场地资料,并且海域场地工程特性是海洋重大工程设计、建造和运维的基础,也是研究海域地震动场地放大的重要参数。为了解决这一问题,本文基于日本海沟区域的S-net台网的150个台站的强地震动数据,得到了埋置和未埋台站的H/V谱比曲线并进行了场地分类。结果表明:海域的H/V谱比曲线有较大谱比值;各个场地类别的埋置和未埋台站的H/V谱比曲线在谱比值和谱比形状存在着巨大差异;震级和震中距对长周期的H/V谱比曲线有较大影响,震源深度对H/V谱比曲线几乎没有影响。研究成果可为海域地震动模拟、海域场地效应研究和海洋工程建设等提供参考。

Abstract

The site information of offshore stations is usually difficult to obtain, and the engineering characteristics of marine sites are the important basis for the design, construction, operation and maintenance of major marine projects, as well as an important parameter for the study of site amplification in marine ground motion. To solve this problem, H/V spectral ratio curves of buried and unburied stations are obtained based on strong ground motion data from 150 stations of the S-net station network in the Japan Trench region and site classification is performed in this study. The results show that the offshore H/V spectral ratio curve has a large spectral ratio value. The H/V spectral ratio curves of each site category for buried and unburied stations differ dramatically in spectral ratio values and spectral ratio shapes. The magnitude and epicentral distance have a large effect on the long-periods H/V spectral ratio curves, and the focal depth has barely any effect on the H/V spectral ratio curves. The research results may provide references for the simulation of offshore ground motion, the study of site effects and the construction of marine engineering.

关键词

近海地震动 / 谱比法 / 海域场地 / 场地分类 / S-net

Key words

offshore ground motion / spectral ratio method / marine site / site classification / S-net

引用本文

导出引用
王时1, 2, 王想1, 2, 胡磊3, 周旭彤4. 基于谱比法的近海地震动S-net台站场地分类研究[J]. 振动与冲击, 2025, 44(1): 90-101
WANG Shi1, 2, WANG Xiang1, 2, HU Lei3, ZHOU Xutong4. Site classification for offshore ground motion S-net stations based on spectral ratio method[J]. Journal of Vibration and Shock, 2025, 44(1): 90-101

参考文献

[1] DOLORES ESTEBAN M, LÓPEZ-GUTIÉRREZ J S, NEGRO V, et al. Offshore wind foundation design: some key issues[J]. Journal of  Energy Resource Technology, 2015, 137 (5): 051211. 
[2]    CHEN P, LI Y, WU J, et al. Impact of suspended sediment diffusion from the implementation of arresting facilities on cross-sea bridges[J]. Sustainability, 2022, 14(15): 9559.
[3] ZHANG X, CHENG X, FENG H, et al. Stability analysis of undersea tunnel subjected to seepage, temperature, and bidirectional earthquake[J]. Electronic Journal of Geotechnical Engineering, 2016, 21: 9719-9734.
[4] BORRERO J C. Field survey of northern Sumatra and Banda Aceh, Indonesia after the tsunami and earthquake of 26 December 2004[J]. Seismological Research Letters, 2005, 76(3): 312-320.
[5] TANAKA Y. The 1995 great Hanshin Earthquake and liquefaction damages at reclaimed lands in Kobe Port[J]. International Journal of Offshore and Polar Engineering, 2000, 10(1).
[6]    李小军, 李 娜, 陈 苏. 中国海域地震区划及关键问题研究[J]. 震灾防御技术, 2021, 16(1): 1-10. 
LI Xiaojun, LI Na, CHEN Su. Study on seismic zoning in China Sea area and its key issues[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 1-10. 
[7]   陈 苏, 周 越, 李小军, 等. 近海域地震动的时频特征与工程特性[J]. 振动与冲击, 2018, 37(16): 227-233. 
CHEN Su, ZHOU Yue, LI Xiaojun, et al. Time-frequency and engineering characteristics on offshore ground motion[J]. Journal of Vibration and Shock, 2018, 37(16): 227-233. 
[8]   胡进军, 刁红旗, 谢礼立. 海底强地震动观测及其特征的研究进展[J]. 地震工程与工程振动, 2013, 33(6): 1-8. 
HU Jinjun, DIAO Hongqi, XIE Lili. Review of observation and characteristics of seafloor strong motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(6): 1-8.
[9]    LI C, LI H, HAO H, et al. Simulation of multi-support depth-varying earthquake ground motions within heterogeneous onshore and offshore sites[J]. Earthquake Engineering and Engineering Vibration, 2018, 17(3): 475-490.
[10]   LI C, HAO H, LI H, et al. Theoretical modeling and numerical simulation of seismic motions at seafloor[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 220-225.
[11]   崔鑫,胡进军,谭景阳,等.2021年日本福岛海域Mw7.1地震S-net海底地震动特征[J].地球物理学报, 2023, 66(1):12.
Cui X, Hu J J,Tan J Y, et al. Characteristics of seafloor ground motion of the S-net strong ground motion from the 2021 Mw 7.1 Off-Fukushima earthquake, Japan. Chinese J. Geophys. 2023, 66(1):12. 
[12]   HU L, LI Y, JI S. An offshore non-ergodic ground motion model for subduction earthquakes in Japan Trench area[J]. Earthquake Spectra, 2024, 40(1): 379-419.
[13] ABRAHAMSON N A, GULERCE Z. Summary of the Abrahamson and Gulerce NGA-SUB ground-motion model for subduction earthquakes[J]. Earthquake Spectra, 2022, 38(4): 2638-2681.
[14] PARKER G A, STEWART J P, BOORE D M, et al. NGA-subduction global ground motion models with regional adjustment factors[J]. Earthquake Spectra, 2022, 38(1): 456-493.
[15] SI H, MIDORIKAWA S, KISHIDA T. Development of NGA-sub ground-motion prediction equation of 5%-damped pseudo-spectral acceleration based on database of subduction earthquakes in Japan[J]. Earthquake Spectra, 2022, 38(4): 2682-2706.
[16] ZHAO J X, XU H. A comparison of VS 30 and site period as site‐effect parameters in response spectral ground‐motion prediction equations[J]. Bulletin of the Seismological Society of America, 2013, 103(1): 1-18.
[17] IDINI B, ROJAS F, RUIZ S, et al. Ground motion prediction equations for the Chilean subduction zone[J]. Bulletin of Earthquake Engineering, 2017, 15: 1853-1880.
[18] KWAK D Y, SEYHAN E. Two-stage nonlinear site amplification modeling for Japan with VS30 and fundamental frequency dependency[J]. Earthquake Spectra, 2020, 36(3): 1359-1385.
[19] ZHU C, PILZ M, COTTON F. Which is a better proxy, site period or depth to bedrock, in modelling linear site response in addition to the average shear-wave velocity?[J]. Bulletin of Earthquake Engineering, 2020, 18: 797-820.
[20] ARTETA C A, PAJARO C A, MERCADO V, et al. Ground-motion model for subduction earthquakes in northern South America[J]. Earthquake Spectra, 2021, 37(4): 2419-2452.
[21]   黄俊,陈志高等. 基于谱比法的高铁地震台站场地分类初探[J]. 振动与冲击, 2019, 38(24): 28-33.
HUANG Jun, CHEN Zhigao et al. Primary investigation on site classification for high speed-railway seismic stations in China using a spectral ratio method. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(24): 28-33.
[22]  NAKAMURA Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Railway Technical Research Institute,1989,30(1):25–33
[23]  YAMAZAKI F,ANSARY M A. Horizontal-to-vertical spectrum ratio of earthquake ground motion for site characterization[J]. Earthquake Engineering and Structural Dynamics,1997,26(7):671–689.
[24] ZHAO J X, IRIKURA K, ZHANG J, et al. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio[J]. Bulletin of the Seismological Society of America, 2006, 96(3): 914-925.
[25] FUKUSHIMA Y, BONILLA L F, SCOTTI O, et al. Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations[J]. Journal of Earthquake Engineering, 2007, 11(5): 712-724.
[26] GHASEMI H, ZARE M, FUKUSHIMA Y, et al. Applying empirical methods in site classification, using response spectral ratio (H/V): a case study on Iranian strong motion network (ISMN)[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(1): 121-132.
[27] DI Alessandro C, BONILLA L F, BOORE D M, et al. Predominant‐period site classification for response spectra prediction equations in Italy[J]. Bulletin of the Seismological Society of America, 2012, 102(2): 680-695.
[28]  WEN R Z,REN Y F,ZHOU Z H,et al. Preliminary site classification of free-field strong motion stations based on Wenchuan earthquake records[J]. Earthquake Science,2010,23(1):101–110. 
[29]   WEN R Z,RENYF,SHI D C. Improved HVSR site classification method      for free-field strong motion stations validated with Wenchuan aftershock recordings[J]. Earthquake Engineering and Engineering Vibration,2011,10(3):325–337.
[30]  WEN R, REN Y, ZHOU Z, et al. Temporary strong-motion observation network for Wenchuan aftershocks and site classification[J]. Engineering Geology, 2014, 180: 130-144.
[31]   温瑞智, 冀昆, 任叶飞等.基于谱比法的我国强震台站场地分类[J].岩石力学与工程学报,2015,34(06):1236-1241. 
WEN Ruizhi, JI Kun REN Yefei et al. Site classification for strong earthquake stations in china using spectral ratio method[J]. Site classification for strong earthquake stations in china using spectral ratio method,2015,34(06):1236-1241. 
[32]   JI K, REN Y, WEN R. Site classification for National Strong Motion Observation Network System (NSMONS) stations in China using an empirical H/V spectral ratio method[J]. Journal of Asian Earth Sciences, 2017, 147: 79-94.
[33]   刘献伟, 陈苏, 李小军等. 基于HVSR谱比动态聚类的海域场地特性研究[J]. 岩土工程学报, 2023, 45(1): 213-220.
LIU Xianwei, CHEN Su, LI Xiaojun et al. Characteristics of marine site based on HVSR dynamic clustering method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 213-220. 
[34] AOI S, ASANO Y, KUNUGI T, et al. MOWLAS: NIED observation network for earthquake, tsunami and volcano[J]. Earth, Planets and Space, 2020, 72(1): 1-31.
[35] DHAKAL Y P, KUNUGI T, SUZUKI W, et al. Strong motions on land and ocean bottom: comparison of horizontal PGA, PGV, and 5% damped acceleration response spectra in northeast Japan and the Japan Trench area[J]. Bulletin of the Seismological Society of America, 2021, 111(6): 3237-3260.
[36] TAKAGI R, UCHIDA N, NAKAYAMA T, et al. Estimation of the orientations of the S‐net cabled ocean‐bottom sensors[J]. Seismological Research Letters, 2019, 90(6): 2175-2187.
[37] NAKAMURA T, HAYASHIMOTO N. Rotation motions of cabled ocean-bottom seismic stations during the 2011 Tohoku earthquake and their effects on magnitude estimation for early warnings[J]. Geophysical Journal International, 2019, 216(2): 1413-1427.
[38] ANCHETA T D, DARRAGH R B, STEWART J P, et al. NGA-West2 database[J]. Earthquake Spectra, 2014, 30(3): 989-1005.
[39] PUGLIA R, RUSSO E, LUZI L, et al. Strong-motion processing service: A tool to access and analyse earthquakes strong-motion waveforms[J]. Bulletin of Earthquake Engineering, 2018, 16: 2641-2651.
[40] TRNKOCZY A. Understanding and parameter setting of STA/LTA trigger algorithm[M]//New Manual of Seismological Observatory Practice (NMSOP). Potsdam:Deutsches GeoForschungsZentrum GFZ, 2009.
[41] KAWASE H, NAGASHIMA F, NAKANO K, et al. Direct evaluation of S-wave amplification factors from microtremor H/V ratios: Double empirical corrections to “Nakamura” method[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105067.
[42] BOORE D M, SMITH C E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off  the coast of southern California[J]. Bulletin of the Seismological Society of America, 1999, 89(1): 260-274.
[43] CHEN B, WANG D, LI H, et al. Vertical-to-horizontal response spectral ratio for offshore ground motions: analysis and simplified design equation[J]. Journal of Central South University, 2017, 24(1): 203-216.
[44] CHEN B, WANG D, LI H, et al. Characteristics of earthquake ground motion on the seafloor[J]. Journal of Earthquake Engineering, 2015, 19(6): 874-904.
[45] TAN J , HU J .A prediction model for vertical-to-horizontal spectral ratios of ground motions on the seafloor for moderate magnitude events for the Sagami Bay region in Japan[J].Journal of Seismology, 2021, 25(1):181-199.
[46]   HU J, TAN J, ZHAO J X. New GMPEs for the Sagami Bay region in Japan for moderate magnitude events with emphasis on differences on site amplifications at the Seafloor and land seismic stations of K‐NET[J]. Bulletin of the Seismological Society of America, 2020, 110(5): 2577-2597.

PDF(6189 KB)

Accesses

Citation

Detail

段落导航
相关文章

/