冲击振动测试因其方便、低成本,且单次冲击能同时激发多阶模态等特点,被广泛应用于模态分析中。为实现冲击测试中模态参数识别的高效求解和不确定性分析,提出一种快速贝叶斯快速傅里叶变换模态参数识别方法。该研究从频域结构振动方程入手,构建似然函数,基于拉普拉斯逼近算法以高斯概率分布形式近似求解模态参数的后验概率分布。首先,求得各模态参数的梯度并利用坐标下降法最小化负对数似然函数 (negative log likelihood function,NLLF),此时得到的模态参数值即为后验均值。然后,基于矩阵代数手段,求得NLLF在后验均值处的二阶导数矩阵,其逆矩阵给出模态参数的后验协方差矩阵。最后,通过数值模拟和试验室测试数据验证该算法的准确性和高效性,以及相对于基于环境激振测试和自由振动测试的优越性。
Abstract
The impact vibration test is widely used in modal analysis, because of its convenience, low cost, and efficiency in identifying multiple modes with a single impact.To achieve efficient and accurate estimation and uncertainty quantification of modal parameters in the impact test, a fast Bayesian fast Fourier transform method was proposed.The likelihood function was first developed based on the equation of motion and the complex normal assumption of measurement error, and the Laplace approximation was then adopted to obtain the posterior distribution of modal parameters, i.e., fitting the posterior distribution with a Gaussian distribution, whose mean was computed by minimizing the negative log likelihood function (NLLF) while the covariance matrix was obtained by taking the inverse of the Hessian matrix of NLLF at the posterior mean.A coordinate descent algorithm was proposed to minimize the NLLF taking advantage of the analytical gradient of NLLF.The Hessian matrix was obtained via the calculus of complex matrix, allowing an efficient implementation.Finally, the performance of the proposed method was validated through synthetic and laboratory data.A comparison with the methods based on free and ambient vibration tests was also provided, respectively.
关键词
冲击振动测试 /
贝叶斯方法 /
试验模态分析 /
模态识别 /
不确定性量化
{{custom_keyword}} /
Key words
impact vibration test /
Bayesian method /
experimental modal analysis /
modal identification /
uncertainty quantification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Schwarz B J, Richardson M H. Experimental modal analysis[J]. CSI Reliability week, 1999, 35(1): 1-12.
[2] 谢小平,姜彪,雷飞. 实验模态分析快速计算方法与应用研究[J]. 振动与冲击,2015, 34(24): 46-52.
XIE Xiao-ping, JIANG Biao, LEI Fei. Fast calculation method experimental modal analysis and its application[J]. Journal of Vibration and Shock, 2015, 34(24): 46-52.
[3] Au S K. Bayesian Operational Modal Analysis: Modelling, Algorithms, Uncertainty Laws[M]. Singapore: Springer, 2017
[4] Au S K. Fast Bayesian ambient modal identification in the frequency domain, Part I: Posterior most probable value[J]. Mechanical Systems and Signal Processing, 2012, 26: 60-75.
[5] Au S K. Fast Bayesian ambient modal identification in the frequency domain, Part II: Posterior uncertainty[J]. Mechanical Systems and Signal Processing, 2012, 26: 76-90.
[6] 陈钊. 车轮冲击力测量与桥梁性能快速评估[D]. 南京:东南大学,2017.
CHEN Zhao. Tire force measurement and rapid bridge test[D]. Nanjing: Southeast University, 2017.
[7] Au S K, Ni Y C. Fast Bayesian modal identification of structures using known single‐input forced vibration data[J]. Structural Control and Health Monitoring, 2014, 21(3): 381-402.
[8] Brownjohn, J, Koo K Y, Basagiannis C, et al. Vibration monitoring and condition assessment of the University of Sheffield Arts Tower during retrofit[J]. Journal of Civil Structural Health Monitoring, 2013, 3: 153-168.
[9] 陈章位,于慧君. 振动控制技术现状与进展[J]. 振动与冲击,2009, 28(03): 73-77+86+200.
CHEN Zhangwei, YU Huijun. Existing state and development of vibration control technology[J]. Journal of Vibration and Shock, 2009, 28(03): 73-77+86+200.
[10] 何旭辉,陈政清,黄方林等.南京长江大桥安全监测和状态评估的初步研究[J]. 振动与击,2003, (01): 77-80+112.
HE Xuhui, CHEN Zhengqing, HUANG Fanglin, et al. Preliminary studies on safety monitoring and state assessment for Nanjing Yangtse River Bridge[J]. Journal of Vibration and Shock, 2003, (01):77-80+112.
[11] Stokoe K. H., Cox B. R., Clayton P. M., et al. NHERI @ UTexas Experimental Facility With Large-Scale Mobile Shakers for Field Studies[J]. Frontiers in Built Environment, 2020, 6
[12] 纪国宜,赵淳生. 振动测试和分析技术综述[J]. 机械制造与自动化,2010, 40(03): 1-5+50.
JI Guo-yi, ZHAO Chun-sheng. Summary of vibration testing and analysis[J]. Machine Building and Automation, 2010, 40(03): 1-5+50.
[13] 沈松,应怀樵,雷速华,等. 用锤击法和变时基技术进行黄河铁路桥的模态试验分析[J]. 振动工程学报,2000(03): 172-175.
SHEN Song, YING Huai-qiao, LEI Su-hua, et al. Modal test for yellow river bridge exciting with hammer[J] Journal of Vibration Engineering, 2000(03): 172-175.
[14] 谢红霞,宿健,易宏,等. 冲击荷载进行桥梁模态试验的研究[J]. 公路交通科技,2005(08): 86-89.
XIE Hong-xia, SU Jian, YI Hong, et al. Research on bridge modal identification by impulse load[J] Journal of Highway and Transportation Research and Development, 2005(08): 86-89.
[15] 周云,易伟建,蒋运忠,等. 多参考点脉冲锤击法识别桥梁模态柔度的实践[J]. 中国公路学报,2015, 28(09): 46-56.
ZHOU Yun, YI Wei-jian, JIANG Yun-zhong, et al. Practice of bridge modal flexibility identification using multiple-reference impact test[J] China Journal of Highway and Transport, 2015, 28(09): 46-56.
[16] 李林波. 基于移动冲击的桥梁快速测试与损伤识别[D].东南大学,2020.
LI Lin-bo. Rapid bridge test and damage identification based on moving impact[D] Nanjing: Southeast University,2020.
[17] TIAN Y D, ZHANG J, YU S S. Rapid impact testing and system identification of footbridges using particle image velocimetry[J]. Computer‐Aided Civil and Infrastructure Engineering, 2019, 34(2): 130-145.
[18] 茆诗松.贝叶斯统计[M]. 北京:中国统计局出版社,1999
MAO Shi-song. Bayesian statistics[M]. Beijng: China Bureau of Statistics Press, 1999.
[19] Bittanti S, Lovera M. Bootstrap-based estimates of uncertainty in subspace identification methods, Automatica, 2000, 36(11): 1605-1615.
[20] Au S K, Zhang F L, Ni Y C. Bayesian operational modal analysis: Theory, computation, practice[J]. Computers and Structures, 2013, 126: 3-14.
[21] Ng C T, Au S K. Mode shape scaling and implications in modal identification with known input[J]. Engineering Structures, 2018, 156: 411-416.
[22] Ng C T, Wang P X, Au S-K, et al. Uncertainty laws of experimental modal analysis with known broadband input[J]. Mechanical Systems and Signal Processing, 2023, 204: 110624.
[23] Zhang F L, Ni Y C, Au S K, et al. Fast Bayesian approach for modal identification using free vibration data, Part I – Most probable value[J]. Mechanical Systems and Signal Processing, 2016, 70-71: 209-220.
[24] Ni Y C, Zhang F L, Lam H F, et al. Fast Bayesian approach for modal identification using free vibration data, Part II—Posterior uncertainty and application[J]. Mechanical Systems and Signal Processing, 2016, 70-71: 221-244.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}