振动条件下立铣刀切削加工能量流构建方法

姜彬1, 范丽丽2, 褚圣先3, 董鹏3, 赵培轶1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 140-152.

PDF(3601 KB)
PDF(3601 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 140-152.
振动理论与交叉研究

振动条件下立铣刀切削加工能量流构建方法

  • 姜彬*1,范丽丽2,褚圣先3,董鹏3,赵培轶1
作者信息 +

Construction method of energy flow for end milling cutting under vibration conditions

  • JIANG Bin*1,FAN Lili2,CHU Shengxian3,DONG Peng3,ZHAO Peiyi1
Author information +
文章历史 +

摘要

立铣刀切削过程中的能量流承担着驱动物质流流动的功能,能量流的变化特性决定着铣刀切削物质流的传递转换关系,进而影响铣削加工表面形成过程。依据振动作用下的铣刀瞬时切削行为,揭示切削加工过程中的能量构成及其传递转换关系;利用节点瞬时状态参量,定量表征铣刀能量流各个节点的能量;利用流量、流动势和阻,揭示能量流结构的流动状态;利用㶲效率,揭示切削过程输出有用能的分布特性;并利用铣刀瞬时切削能量效率与切削比能进行实验验证。铣刀瞬时切削能量效率与切削比能的解算结果与实验结果的灰色相对关联度大于0.81,相对误差小于19.9%,验证结果表明采用上述模型和方法,可揭示出铣削过程中能量流的变化特性。

Abstract

During the cutting process with an end mill, energy flow drives material flow. The variation of energy flow dictates the transformation and transfer of material flow, thereby influencing the surface formation during milling. Based on the instantaneous cutting behavior of the milling cutter under vibration, energy composition and transfer conversion relationship was revealed during the cutting process. Instantaneous state parameters of nodes to quantitatively characterize the energy of milling cutters at each node was used. Flow rates, flow potentials, and resistances were employed to describe the flow state of the energy structure. Exergy efficiency was used to analyze the distribution characteristics of useful energy output during the cutting process. Experimental validation was performed using the instantaneous cutting energy efficiency and specific cutting energy of the milling cutter. The results showed that calculated and experimental results of instantaneous cutting energy efficiency, calculated and experimental results of specific cutting energy of the milling cutter exhibited a grey relative correlation coefficient exceeding 0.81, and a relative error of less than 19.9%. The aforementioned models and methods enable the revelation of the dynamic variations in energy flow during the milling process.

关键词

铣削振动 / 铣刀 / 能量流 / 流结构

Key words

milling vibration / milling cutter / energy flow / flow structure

引用本文

导出引用
姜彬1, 范丽丽2, 褚圣先3, 董鹏3, 赵培轶1. 振动条件下立铣刀切削加工能量流构建方法[J]. 振动与冲击, 2025, 44(10): 140-152
JIANG Bin1, FAN Lili2, CHU Shengxian3, DONG Peng3, ZHAO Peiyi1. Construction method of energy flow for end milling cutting under vibration conditions[J]. Journal of Vibration and Shock, 2025, 44(10): 140-152

参考文献

[1]  Jamil M, Zhao W, He N, et al. Sustainable Milling of Ti-6Al-4V: A Trade-off Between Energy Efficiency, Carbon Emissions and Machining Characteristics Under MQL and Cryogenic Environment[J]. Journal of Cleaner Production, 2021, 281: 125374.
[2] Oh N S, Woo W S, Lee C M. A Study on the Machining Characteristics and Energy Efficiency of Ti-6Al-4V in Laser-assisted Trochoidal Milling[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5: 37-45.
[3] Mou W P, Jiang Z X, Zhu S W. A Study of Tool Tipping Monitoring for Titanium Milling Based on Cutting Vibration[J]. The International Journal of Advanced Manufacturing Technology, 2019, 104: 3457-3471.
[4] 窦炜, 袁胜万, 何晓聪. 一种改进的螺旋齿铣刀立铣切削力计算方法[J]. 振动与冲击, 2018, 37(10):181-186+207.
Dou W, Yuan S W, He X C. Improved Method for Calculating the Cutting Force of End Milling with Helical Tools[J]. Journal of Vibration and Shock, 2018, 37(10): 181-186.
[5] Chandradass J, Kannan T T M. Investigation of Vibration Analysis During End Milling Process of Monel Alloy[J]. Materials Today: Proceedings, 2021, 39: 695-699.
[6] Płodzien M, Zylka L, Sulkowicz P, et al. High-performance Face Milling of 42CrMo4 Steel: Influence of Entering Angle on the Measured Surface Roughness, Cutting Force and Vibration Amplitude[J]. Materials, 2021, 14(9): 2196.
[7] Li C, Duan C Z, Chang B B. Instantaneous Cutting Force Model Considering the Material Structural Characteristics and Dynamic Variations in the Entry and Exit Angles During End Milling of the Aluminum Honeycomb Core[J]. Mechanical Systems and Signal Processing, 2022, 181: 109456.
[8] Zhang Y B, Bai Q S, Zhang F R, et al. Calculation and Analysis of Quasi-dynamic Cutting Force and Specific Cutting Energy in Micro-milling Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(9): 6067-6078.
[9] Lei Z Z, Lin X J, Wu G, et al. Cutting Force Modeling and Experimental Study for Ball-end milling of Free-form Surfaces[J]. Mathematical Problems in Engineering, 2021, 2021: 1-18.
[10] Shi K N, Liu N, Liu C L, et al. Indirect Approach for Predicting Cutting Force Coefficients and Power Consumption in Milling Process[J]. Advances in Manufacturing, 2022: 10(1): 101-113.
[11] Tesic S, Cica D, Borojevic S, et al. Optimization and Prediction of Specific Energy Consumption in Ball-End Milling of Ti-6Al-4V Alloy Under MQL and Cryogenic Cooling/Lubrication Conditions[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022: 9(6): 1427-1437.
[12] Sun Z W, Wang S J, To S, et al. Modelling and Analysis of the Specific Cutting Energy for Ultra-precision Diamond Cutting of Ti6Al4V alloy[J]. Journal of Manufacturing Processes, 2023, 85: 844-857.
[13] Imani Asrai R, Newman S T, Nassehi A. A Mechanistic Model of Energy Consumption in Milling[J]. International Journal of Production Research, 2018, 56(1-2): 642-659.
[14] Shin S J, Woo J Y, Rachuri S. Energy Efficiency of Milling Machining: Component Modeling and Online Optimization of Cutting Parameters[J]. Journal of Cleaner Production, 2017, 161: 12-29.
[15] Zhao G Y, Su Y, Zheng G M, et al. Tool Tip Cutting Specific Energy Prediction Model and the Influence of Machining Parameters and Tool Eear in Milling[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2020, 234(10): 1346-1354.
[16] Lu F Y, Zhou G H, Liu Y, et al. Ensemble Transfer Learning for Cutting Energy Consumption Prediction of Aviation Parts Towards Green Manufacturing[J]. Journal of Cleaner Production, 2022, 331: 129920.
[17] 宋阳, 曹华军, 张金, 等. 纤维随机分布CFRP高速铣削比能模型与表面质量优化[J]. 机械工程学报, 2024, 60(1): 65-74.
Song Y, Cao H J, Zhang J, et al. High Speed Milling Specific Cutting Energy Model of CFRP and Its Surface Quality Optimization Based on Random Fiber Distribution[J]. Journal of Mechanical Engineering, 2024, 60(1): 65-74.
[18] 李安海, 张茹凤, 赵军, 等. 基于净切削比能的钛合金清洁切削加工表面完整性研究[J]. 表面技术, 2023, 52(12): 57-64.
Li Anhai, Zhang Rufeng, Zhao Jun, et al. Surface Integrity of Clean Machined Titanium Alloy   Based on Net Specific Cutting Energy[J]. Surface Technology, 2023, 52(12): 57-64.
[19] Meng Y, Wang L, Lee C H, et al. Plastic Deformation-based Energy Consumption Modelling for Machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 631 - 641.
[20] 李聪波, 余必胜, 肖溱鸽, 等. 考虑刀具磨损的数控车削批量加工工艺参数节能优化方法[J]. 机械工程学报, 2021, 57(01): 217-229.
Li C B, Yu B S, Xiao Q G, et al. A Cutting Parameter Energy-saving Optimization Method for  
CNC Turning Batch Processing Considering Tool Wear[J]. Journal of Mechanical Engineering, 2021, 57(01): 217-229.
[21] Han F J, Li L, Cai W, et al. Parameters Optimization Considering the Trade-off Between Cutting Power and MRR Based on Linear Decreasing Particle Swarm Algorithm in Milling[J]. Journal of Cleaner Production, 2020, 262: 121388.
[22] Li C X, Zhao G Y, Zhao Y G, et al. Prediction Model of Net Cutting Specific Energy Based on Energy Flow in Milling[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2022, 9(5): 1285-1303.
[23] Feng C, Wang D H, Piao C D, et al. Research on Cutting Parameter Optimization Based on Energy Consumption and Surface Roughness[J]. Machine Tool & Hydraulics, 2018, 46(21): 136-140.
[24] Zhang H, Deng Z H, Fu Y H, et al. Optimization of Process Parameters for Minimum Energy Consumption Based on Cutting Specific Energy Consumption[J]. Journal of Cleaner Production, 2017, 166: 1407-1414.
[25] Rahman M A, Rahman M, Mia M, et al. Investigation of the Specific Cutting Rnergy and its Rffect in Shearing Dominant Precision Micro Cutting[J]. Journal of Materials Processing Technology, 2020, 283: 116688.
[26] Lee R N Hussain S J, Wang J J, et al. Optimal Insert Edge Geometry for Minimum Specific Cutting Energy in Face Milling[J]. Journal of the Chinese Society of Mechanical Engineers, Series C: Transactions of the Chinese Society of Mechanical Engineers, 2020, 41(6): 725-733.
[27] 陈行政, 李聪波, 吴磊, 等. 面向能耗的多刀具孔加工刀具直径及工艺参数集成优化模型[J]. 机械工程学报, 2018, 54(15): 221-231.
Chen X Z, Li C B, Wu L, et al. Integrated optimization model for tool diameter and process parameters in multi tool hole machining for energy consumption[J]. Journal of Mechanical Engineering, 2018, 54(15): 221-231.
[28] 贾振元, 付饶, 王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报, 2023, 59(19): 348-374.
Jia Z Y, Fu R, Wang F J. Research Advance Review of Machining Technology for Carbon Fiber Reinforced Polymer Composite Components[J]. Journal of Mechanical Engineering, 2023, 59(19): 348-374.
[29] Fan L L, Jiang B, Zhao P Y, et al. Calculation Method for Instantaneous Shear Energy Efficiency and Volume-Energy Ratio of Milling Cutter under Multiple Factors[J]. The International Journal of Advanced Manufacturing Technology, 2023, 129: 2897-2920.
[30] 杨桂通. 弹塑性动力学基础[M]. 北京: 科学出版社, 2008: 121-126.
Yang G T. Fundamentals of Elastoplastic Dynamics[M]. Beijing. Science Press. 2008: 121-126.
[31] Xiao B D, Zhang G J, Xu Z, et al. Application of Grey Theory in WEDM[J]. Journal of Mechanical Science and Technology, 2017; (1): 58-67.
[32] 李家会, 金炜东, 熊莉英. 基于模糊灰关联分析的高速列车运行状态识别[J]. 振动与冲击, 2014, 33(16): 188-193.
Li J H, Jin W D, Xiong L Y. Running state recognition of high-speed train based on fuzzy grey relational analysis[J]. Journal of Vibration and Shock, 2014, 33(16): 188-193.

PDF(3601 KB)

Accesses

Citation

Detail

段落导航
相关文章

/