输油管路变参数波纹管动力吸振器设计及应力优化分析

叶茂

振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 191-197.

PDF(1615 KB)
PDF(1615 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 191-197.
振动理论与交叉研究

输油管路变参数波纹管动力吸振器设计及应力优化分析

  • 叶茂*
作者信息 +

Design and stress optimization analysis of a bellows dynamic vibration absorber with variable parameters for oil pipelines

  • YE Mao*
Author information +
文章历史 +

摘要

波纹管吸振器在油气输运管线的减振降噪方面具有重要应用价值。变参数的非周期波纹管通过结构优化,在保证减振性能同时还可以在一定程度上改善吸振器的疲劳寿命,但目前变参数波纹管的力学特性尚缺少有效的理论计算方法。针对一种变圆环半径的波纹管吸振器结构,建立了其板壳力学模型,通过圆环板和圆环壳的控制方程及连接条件并给出了波纹管刚度及应力的计算方法;继而通过有限元及文献结果比对,证实了板壳力学模型的准确性和可靠性;最后,对变参数非周期波纹管结构,分析了变波纹管圆环半径对波纹管结构应力的影响规律,研究结果表明:圆环壳半径越大,子午面内由薄膜内力和弯矩引起的总正应力则越小,变圆弧半径优化结构对改善吸振器的疲劳寿命越有利。本文相关研究成果可为变参数波纹管吸振器的结构设计及优化提供有效理论支撑。

Abstract

The bellows vibration absorber has important application value in vibration and noise reduction of oil and gas pipelines. The aperiodic bellows with variable parameters can improve the fatigue life of the vibration absorber to a certain extent while ensuring the vibration reduction performance through structural optimization, but there is still a lack of effective theoretical calculation methods for the mechanical properties of the variable parameter bellows. Aiming at the bellows vibration absorber structure with variable circular radius, the plate-shell model is established, and the stiffness and stress of the bellows is given through the governing equations and connection conditions of the circular plate and circular shell. Then, the accuracy of the plate -shell model is verified through the comparison with both of the finite element and literature results. Finally, for the aperiodic bellows structure with variable parameters, the influence of the circular radius of bellows on the stress is analyzed. The research results show that the larger the radius of the circular shell, the smaller the total normal stress caused by the membrane internal force and bending moment in the meridian plane, which is beneficial to improve the fatigue life of the vibration absorber. The relevant research results of this research can provide effective theoretical supporting for the structural design and optimization of the bellows vibration absorber with variable parameters.

关键词

动力吸振器 / 波纹管 / 输油管道 / 板壳模型 / 力学特性

Key words

dynamic vibration absorber / bellows / oil pipelines / plate-shell model / mechanics properties

引用本文

导出引用
叶茂. 输油管路变参数波纹管动力吸振器设计及应力优化分析[J]. 振动与冲击, 2025, 44(10): 191-197
YE Mao. Design and stress optimization analysis of a bellows dynamic vibration absorber with variable parameters for oil pipelines[J]. Journal of Vibration and Shock, 2025, 44(10): 191-197

参考文献

[1] 岑康, 温韵巧, 魏星, 等. 天然气输气站工艺管线流致振动分析及控制研究[J].振动与冲击, 2023, 42(16): 278-283. 
Cen Kang, Wen Yunqiao, Wei Xing, etc. Analysis and control on flow-induced vibration of process piping in natural gas transmission stations[J]. Journal of Vibration and Shock, 2023, 42(16): 278-283.
[2] 林武斌, 滕汉东. 动力吸振在输油泵机组垂向减振中的应用研究[J].振动与冲击, 2020, 39(12): 289-293. 
Lin Wubin, Teng Handong. Application of dynamic vibration in the vertical vibration reduction of oil pump unit[J]. Journal of Vibration and Shock, 2020, 39(12): 289-293.
[3] 李柏松, 苏建峰, 张兴等.输油泵进出口管道振动诊断方法[J].油气储运, 2021, 40(1): 21-25. 
Li Baisong, Su Jianfeng, Zhang Xing, etc. Vibration diagnosis method of oil pump inlet and outlet pipes[J]. Oil & Gas Storage and Transportation, 2021, 40(1): 21-25.
[4] 丁虎.输流管道振动的被动控制研究[J]. 自然杂志, 2022, 44(4): 316-322.
Ding Hu. Passive control of vibration in pipes conveying fluid[J]. Chinese Journal of Nature, 2022, 44(4): 316-322.
[5] 任志英, 任嘉鑫, 刘天彦, 等. 用于核电机组复杂管线小支管的动力吸振器设计与试验研[J]. 核动力工程: 2024, 45(1): 106-114.
Ren Zhiying, Ren Jiaxin, Liu Tianyan,etc. Design and Experimental Study of Dynamic Vibration Absorber for Small Branch Pipe of Complex Pipeline of Nuclear Power Unit[J]. Nuclear Power Engineering, 2024, 45(1): 106-114.
[6] 张存, 郭建廷, 卞向前, 等. 基于动力吸振原理的船舶管路吸振装置设计及性能分析[J]. 舰船科学技术,2022,44(21):41-46.
Zhang Cun, Guo Jianting, Bian xiangqian, etc. Marine pipeline vibration absorption device based on dynamic vibration absorption principle[J]. SHIP SCIENCE AND TECHNOLOGY, 2022, 44(21): 41-46.
[7] 张丹伟, 江俊, 王利亚. 管道系统动力减振器的设计及仿真研究[J].制冷, 2022, 41(04): 40-43+50.
Zhang Danwei, Jiang Jun, Wang Liya, etc. Design and Simulation Research on Dynamic Vibration Absorber of Piping System[J]. REFRIGERATION, 2022, 44(21): 40-43+50.
[8] 马骏骋, 肖梅杰, 闫博文. 一种输液管道减振的宽频域橡胶弹簧动力吸振系统设计仿真[J]. 科学技术创新, 2023(15): 204-207.
Ma Juncheng, Xiao Meijie, Yan Bowen, etc. Design and Simulation of a Wide-frequency-domain Rubber Spring Dynamic Vibration Absorption System for Vibration Reduction of Conveying Pipeline[J]. Scientific and Technological Innovation, 2023 (15): 204-207.
[9] 马育,滕汉东.应用颗粒阻尼技术降低压力表及其测压细管振动的研究[J]. 振动与冲击, 2023, 42(24):326-330. 
Ma Yu, Teng Handong. Impedance Analysis of Tuned Vibration Absorbers for Oil Pipeline Vibration Control[J]. Journal of Vibration and Shock, 2023, 42 (24): 326-330.
[10] 马育, 滕汉东. 用于原油管道减振的吸振器阻抗研究[J].振动.测试与诊断, 2023, 43(05):1001-1004+1043. 
Ma Yu, Teng Handong. Research on the application of particle damping in vibration reduction of pressure gauges and pressure measuring thin tubes below[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(05):1001-1004+1043.
[11] 钱伟长, 吴明德. U 型波纹管的非线性特性摄动法计算. 应用数学和力学, 1983, 4(5): 595-608.
Qian weichang, Wu Mingde. The Nonlinear Characteristics of U-Shaped Bellows Calculations by the Method of Perturbation[J]. Applied Mathematics and Mechanics, 1983, 4(5): 595-608.

PDF(1615 KB)

Accesses

Citation

Detail

段落导航
相关文章

/