增压式脉冲水射流破碎硬岩机制及性能表征

凌远非1, 2, 王晓强1, 2, 汤积仁3, 张洋凯4

振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 21-29.

PDF(2290 KB)
PDF(2290 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 21-29.
冲击与爆炸

增压式脉冲水射流破碎硬岩机制及性能表征

  • 凌远非1,2,王晓强1,2,汤积仁*3,张洋凯4
作者信息 +

Hard rock fragmentation mechanism and performance characterization of a pressurized pulsed water jet

  • LING Yuanfei1,2,WANG Xiaoqiang1,2,TANG Jiren*3,ZHANG Yangkai4
Author information +
文章历史 +

摘要

增压式脉冲水射流作为一种新型的脉冲水射流,具有增压幅度大、射流参数可控和能量利用率高等优势,在硬岩破碎领域具有广阔的应用前景。为进一步提升射流破岩性能,利用自行研制增压式脉冲水射流发生系统开展破碎花岗岩试验,基于三维形貌扫描技术,提出射流破岩宏观性能精确表征方法,探究不同工艺参数对射流破岩性能的影响规律,揭示射流作用下岩体内部细观破裂机制和损伤分布特征。结果表明:射流压力为60 MPa时破岩性能参数存在明显的阶跃式增长,靶距大于100 mm时破岩性能参数急剧下降,喷嘴直径为0.5 mm时破岩性能参数达到最大。花岗岩在射流冲击作用下形成以“初生裂纹、径向裂纹、衍生裂纹”组成的裂纹网络,破碎坑呈勺状,入口面积大,深度较浅,破碎形式为由内部裂隙扩展所引起的片状剥落;同时,射流对岩体的损伤破坏存在着局部效应,随着深度的增大,总体损伤区域分布范围基本不变,密集损伤区域和损伤程度迅速减小。研究结果为推动增压式脉冲水射流破碎硬岩工程应用提供理论支撑。

Abstract

As a novel type of pulsed water jet, the pressurized pulsed water jet has the advantages of large amplitude pressurization, controllable jet parameters, and high energy utilization rate, which shows broad application prospects in the field of hard rock fragmentation. To improve the rock fragmentation performance of the jet, a pressurized pulsed water jet generation system developed by ourselves was used to conduct the granite fragmentation experiments. Based on three-dimensional morphological scanning technology, a precise macroscopic performance expression method of rock fragmentation was proposed to explore the effects laws of different process parameters on rock fragmentation performance, and the mechanism of fine-grained fracture and damage distribution was revealed. The results show that there is a clear step-like increase in the rock fragmentation performance parameters when the jet pressure is 60 MPa, the rock fragmentation performance parameters drop sharply when the target distance is greater than 100 mm, and the rock fragmentation performance parameters reach the maximum when the nozzle diameter is 0.5 mm. The granite forms a crack network composed of "primary cracks, radial cracks, and derived cracks" under the impact of the jet. The crater is in the shape of a spoon, with a large entrance area and a shallow depth, and the failure mode is sheet-like detachment caused by the expansion of internal fractures. Meanwhile, the jet's damage and destruction to the rock has a local effect, as the depth increases, the overall damage area distribution range remains basically unchanged, and the dense damage region and damage degree decrease rapidly. The research results provide theoretical support for the engineering application of pressurized pulsed water jet for hard rock fragmentation.

关键词

硬岩 / 增压式脉冲水射流 / 性能表征 / 破碎机制

Key words

hard rock / pressurized pulsed water jet / performance characterization / fragmentation mechanism

引用本文

导出引用
凌远非1, 2, 王晓强1, 2, 汤积仁3, 张洋凯4. 增压式脉冲水射流破碎硬岩机制及性能表征[J]. 振动与冲击, 2025, 44(10): 21-29
LING Yuanfei1, 2, WANG Xiaoqiang1, 2, TANG Jiren3, ZHANG Yangkai4. Hard rock fragmentation mechanism and performance characterization of a pressurized pulsed water jet[J]. Journal of Vibration and Shock, 2025, 44(10): 21-29

参考文献

[1] SZADA-BORZYSZKOWSKA M, KACALAK W, BANASZEK K, et al. Assessment of the effectiveness of high-pressure water jet machining generated using self-excited pulsating heads[J]. International Journal of Advanced Manufacturing Technology, 2024, 133(9-10): 5029-5051.
[2] MI J Y, TANG J R, LIU W C, et al. Investigation of fracturing in heterogeneous rocks with cracks under abrasive water jet impact using pixel method[J]. Powder Technology, 2024, 443: 119900.
[3] LU Y Q, ZHANG S, HE F, et al. Experimental and numerical simulation study on the relationship between cutting depth of high-pressure water jet with high traverse speed and disc cutter penetration of TBM in hard rock tunnel[J]. Tunnelling and Underground Space Technology, 2023, 142: 105387.
[4] 潘越, 杨帆, 张泽鹏, 等. 截断式脉冲水射流冲蚀煤岩特性数值模拟[J]. 振动与冲击, 2021, 40(6): 283-288.
PAN Yue, YANG Fan, ZHANG Zepeng, et al. Numerical simulation of coal rock fragmentation characteristics under interrupted pulse water jet[J]. Journal of Vibration and Shock, 2021, 40(6): 283-288.
[5] XUE Y Z, SI H, HU Q T. The propagation of stress waves in rock impacted by a pulsed water jet[J]. Powder Technology, 2017, 320: 179-190.
[6] ABULIMITI A, ZHENG C, LIU Y H, et al. Study on the impacting performance of a self-excited oscillation pulsed jet nozzle[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109120.
[7] MOMBER A W. The response of geo-materials to high-speed liquid drop impact[J]. International Journal of Impact Engineering, 2016, 89: 83-101.
[8] 司鹄, 薛永志. 基于SPH算法的脉冲射流破岩应力波效应数值分析[J]. 振动与冲击, 2016, 35(5): 146-152.
SI Hu, XUE Yongzhi. Numerical analysis for stress wave effects of rock broken under pulse jets[J]. Journal of Vibration and Shock, 2016, 35(5): 146-152.
[9] 司鹄, 薛永志, 周维. 自激振荡脉冲射流破岩效率数值模拟[J]. 振动与冲击, 2016, 35(20): 149-153.
SI Hu, XUE Yongzhi, ZHOU Wei. Numerical simulation of rock fragmentation efficiency under self-excited oscillation pulsed jet[J]. Journal of Vibration and Shock, 2016, 35(20): 149-153.
[10] XUE Y Z, SI H, Hu Q T. The propagation of stress waves in rock impacted by a pulsed water jet[J]. Powder Technology, 2017, 320: 179-190.
[11] RAJ P, HLOCH S, TRIPATHI R, et al. Investigation of sandstone erosion by continuous and pulsed water jets[J]. Journal of Manufacturing Processes, 2019, 42: 121-130.
[12] TRIPATHI R, HLOCH S, CHATTOPADHYAYA S, et al. Influence of frequency change during sandstone erosion by pulsed waterjet[J]. Materials and Manufacturing Processes, 2020, 35(2): 187-194.
[13] DEHKHODA S, HOOD M. An experimental study of surface and sub-surface damage in pulsed water-jet breakage of rocks[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 63: 138-147.
[14] DEHKHODA S, HOOD. The internal failure of rock samples subjected to pulsed water jet impacts[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 66: 91-96.
[15] LI H S, S. Y. Liu, J. G. Jia, et al. Numerical simulation of rock-breaking under the impact load of self-excited oscillating pulsed waterjet[J]. Tunnelling and Underground Space Technology, 2020, 96: 103179.
[16] 陆朝晖, 卢义玉, Michael Hood, 等. 截断式脉冲射流流场结构模拟与冲蚀硬岩能力分析[J]. 振动与冲击, 2017, 36(19): 180-185.
LU Zhaohui, LU Yiyu, HOOD Michael, et al. Numerical simulation and analysis on the flow field structure and hard rockerosion potential of a disc-slotted pulse water jet[J]. Journal of Vibration and Shock, 2017, 36(19): 180-185.
[17] POLYAKOV A, ZHABIN A, AVERIN E, et al. Generated equation for calculating rock cutting efficiency by pulsed water jets[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11: 867-873.
[18] Wang Z A, Kang Y, Wang X C, et al. Effects of modulation position on the impact performance of mechanically modulated pulsed water jet[J]. Journal of Manufacturing process, 2020, 56: 510-521.
[19] Wang Z A, Kang Y, Xie F Q, et al. Experimental investigation on the penetration characteristics of low-frequency impact of pulsed water jet[J]. Wear, 2021, 488-489: 204145.
[20] Ge Z L, Ling Y F, Tang J R, et. al. Formation principle and characteristics of selfsupercharging pulsed water jet[J]. Chinese Journal of Mechanical Engineering, 2022, 33: 51.
[21] Ling Y F, Ge Z L, Tang J R, et. al. Development of a hydraulically controlled piston-pressurized pulsed water jet device and its application potential for hard rock breaking[J]. Review of Scientific Instruments, 2021, 92(8): 085101.
[22] Ling Y F, Wang X Q, Tang J R. Dynamic simulation model and performance optimization of a pressurized pulsed water jet device[J]. Applied Sciences, 2024, 14: 6788.
[23] 汤积仁, 汪壘, 卢义玉, 等. 增压式脉冲水射流脉动特性可视化试验研究[J]. 振动与冲击, 2021, 40(20): 1-8.
TANG J R, WANG L, LU Y Y, et al. An experimental study on visualization of pulsation characteristics of supercharged pulsed water jet[J]. Journal of Vibration and Shock, 2021, 40(20): 1-8.
[24] 张洋凯, 卢义玉, 汤积仁, 等. 增压式脉冲水射流瞬时压力特性试验研究[J]. 振动与冲击, 2024, 43(2): 219-225.
ZHANG Y K, LU Y Y, TANG J R, et al. Experimental study on the instantaneous pressure characteristics of a pressurized pulsed water jet[J]. Journal of Vibration and Shock, 2024, 43(2): 219-225.
[25] Zhang Y K, Li Q. Influence of hydraulic parameters on multi-stage pulse characteristics of pressurized pulsed water jet[J]. Processes, 2023, 11: 2502.
[26] 付裕, 陈新, 冯中亮. 基于CT 扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报, 2020, 45(2): 568-578.
    FU Y, CHEN X, FENG Z L, et al. Characteristics of coal-rock fractures based on CT scanning and its influence on failure modes[J]. Journal of China Coal Society, 2020, 45(2): 568-578.
[27] 全卫泽, 郭建伟, 张义宽, 等. 基于采样半径优化的最大化Poisson圆盘采样[J]. 中国科学: 信息科学, 2017, 47(4): 442-454.
    QUAN W Z, GUO J W, ZHANG Y K, et al. Characteristics of coal-rock fractures based on CT scanning and its influence on failure modes[J]. Scientia Sinica Informationis, 2017, 47(4): 442-454.
[28] Kennedy C F, Field J E. Damage threshold velocities for liquid impact[J]. Journal of Materials Science, 2000, 35: 5331-5339.
[29] Cao S R, Ge Z L, Zhang D, et al. An experimental study of ultra-high pressure water jet-induced fracture mechanisms and pore size evolution in reservoir rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 150: 104995.  

PDF(2290 KB)

Accesses

Citation

Detail

段落导航
相关文章

/