随着现代飞机性能大幅提高,航空机载集成设备架在重量受严格限制条件下需要承受非常恶劣的机械环境,针对某刚性连接设备架耐久振动试验发生疲劳失效问题,结合实际抗振迫切需求开展隔振设计研究,如何合理选择隔振器是最核心关键技术,系统阐述了基于理论计算、仿真分析、试验验证的隔振设计完整流程和过程,区别于之前经验设计,从产品自身对隔振器性能参数需求主动出发,建立了一种正向隔振设计方法,对隔振系统目标频率、隔振器关键参数进行理论分析和计算,确定隔振器选型,在此基础上,进一步进行仿真分析和试验验证。结果表明:根据此隔振设计方法进行隔振器选型隔振效果明显,整体隔振效率达到55%以上,理论计算和仿真分析准确,试验顺利通过,验证了在强振动环境下该隔振正向设计流程的合理性和方法有效性,具有重要的实际意义和广阔应用前景。
Abstract
With the great improvement of the performance of modern aircraft , the aviation airborne integrated equipment rack has to withstand a very harsh mechanical environment under the condition of strict weight restriction, aiming at the fatigue failure of a rigid connection equipment rack in the durable vibration test. combined with the actual anti-vibration urgent needs to carry out vibration isolation design research, how to reasonably select the vibration isolator is the most core key technology. This paper systematically expounds the complete process and process of vibration isolation design based on theoretical calculation, simulation analysis and experimental verification, which is different from the previous empirical design, and establishes a forward vibration isolation design method based on the active requirements of the product itself for the performance parameters of the vibration isolator. the target frequency of the vibration isolation system and the key parameters of the vibration isolator are theoretically analyzed and calculated, and the selection of the vibration isolator is determined. Further simulation analysis and experimental verification are carried out. The results show that according to this vibration isolation design method, the vibration isolation effect of vibration isolator selection is obvious, the overall vibration isolation efficiency is more than 55%, the theoretical calculation and simulation analysis are accurate, and the test passes smoothly. It verifies the rationality and effectiveness of the forward vibration isolation design flow in a strong vibration environment, and has important practical significance and broad application prospects.
关键词
航空机载集成设备架 /
隔振设计 /
仿真分析 /
试验验证
{{custom_keyword}} /
Key words
the aviation airborne integrated equipment rack /
vibration isolation design /
simulation analysist;test verification
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨强,董万元,邵闯.随机振动下偏心隔振系统仿真分析[J].噪声与振动控制,2019,39(2):206-221.
Yang Qiang, Dong Wanyuan, Shao Chuang. Simulation analysis of eccentric isolation system under random vibration [J]. Noise and Vibration Control, 2019, 39 (2): 206-221
[2] 廖磊,李玉川,王文涛.某型无人直升机典型任务设备隔振设计[J].2014,179(2):41-45.
Liao Lei, Li Yuchuan, Wang Wentao. Vibration isolation design of typical mission equipment for a certain type of unmanned helicopter [J]. 2014179 (2): 41-45.
[3] Mead D J.Passive Vibration Control[M].Chichester:John Wiley & Sons, 1999.
[4] 杨文芳,魏强,朱兰琴.基于有限元分析的机载电子设备减振设计[J].振动与冲击,2010,29(5):230-234.
Yang Wenfang, Wei Qiang, Zhu Lanqin. Vibration Reduction Design of Airborne Electronic Equipment Based on Finite Element Analysis [J]. Vibration and Impact, 2010,29 (5): 230-234.
[5] 于慧杰,房凯.某雷达常用减振器的减振缓冲特性比较[J].现代雷达,2010,32(12):99-102.
Yu Huijie, Fang Kai. Comparison of damping and buffering characteristics of commonly used dampers in a certain radar [J]. Modern Radar, 2010,32 (12): 99-102.
[6] 李玉峰,秦志刚.某机载电子设备的抗振设计[J].电子机械工程,2007,23(3):3-6,13.
Li Yufeng, Qin Zhigang. Anti vibration design of a certain airborne electronic equipment [J]. Electronic and Mechanical Engineering, 2007,23 (3): 3-6,13.
[7] 王茂.机载机柜的隔振设计[J].电讯技术,2007,4(2):194-197.
Wang Mao. Isolation Design of Airborne Cabinets [J]. Telecommunications Technology, 2007,4 (2): 194-197.
[8] Ruzicka J E,Derby T F.Vibration isolation with nonliner damping[J]. Journal of Manufacturing Science and Engineering,1971,93(2):627-635.
[9] Soliman I J. Optimization of unidirectional viscous damped vibration system[J].Journal of Sound andVibration,1974,36(4):
527-539.
[10] Sciuli D,Inman D J.Isolation Design for a flexible systenm[J].
Journal of Sound Vibration,1998,216(2) :251-267.
[11] Wowk V. Mechanical vibration measurement and analysis[M].
New york:McGraw-Hill Inc,1991.
[12] 胡海岩.机械振动基础[M].哈尔滨:哈尔滨工业大学出版社,2004.
Hu Haiyan. Fundamentals of Mechanical Vibration [M]. Harbin: Harbin Institute of Technology Press, 2004.
[13] 朱石坚,楼京俊,何其伟,等.振动理论与隔振技术[M].北京:国防工业出版社,2006.
Zhu Shijian, Lou Jingjun, He Qiwei, et al. Vibration Theory and Isolation Technology [M]. Beijing: National Defense Industry Press, 2006.
[14] 马帅旗.机械电子设备减振设计[J].噪声与振动控制,2014,34(2):185-187.
Ma Shuaiqi. Vibration Reduction Design of Mechanical and Electronic Equipment [J]. Noise and Vibration Control, 2014,34 (2): 185-187.
[15] HB5830.5.机载设备环境条件及试验方法振动[S].北京:中华人民共和国航空工业部,1984.
HB5830.5. Airborne equipment environmental conditions and test methods Vibration [S]. Beijing: Ministry of Aviation Industry of the People's Republic of China, 1984.
[16] GJB150.16A.军用装备实验室环 境试验方法 第 18 部分:冲击试验[S].北京:中国人民解放军总装备部,2009.
GJB150.16A. Environmental Test Methods for Military Equipment Laboratories Part 18: Impact Test [S]. Beijing: General Equipment Department of the People's Liberation Army of China, 2009.
[17] 季馨,王树荣.电子设备振动环境适应性设计[M].北京:电子工业出版社,2021.
Ji Xin, Wang Shurong. Adaptive Design of Vibration Environment for Electronic Equipment [M]. Beijing: Electronic Industry Press, 2021.
[18] 戴夫.S.斯坦伯格.电子设备振动分析[M].王建刚,译.北京:航空工业出版社,2012.
Dave S. Steinberg. Vibration Analysis of Electronic Equipment [M]. Translated by Wang Jiangang. Beijing: Aviation Industry Press, 2012.
[19] 季馨.电子设备振动分析与试验[M].南京:东南大学出版社,1992.
Ji Xin. Vibration analysis and testing of electronic equipment [M]. Nanjing: Southeast University Press, 1992.
[20] 季馨.去耦隔振系统简易设计方法探讨[J].电子机械工程,1985,04(007):23-29.
Ji Xin. Discussion on simple design method of decoupling vibration isolation system [J]. Electromechanical Engineering, 1985, 04 (007):23-29.
[21] 杨强,段宇星,师永宁.航空机载设备隔振安装设计[J].测控技术,2015,34(1):666-673.
Yang Qiang, Duan Yuxing, Shi Yongning. Design of Vibration Isolation Installation for Aviation Airborne Equipment [J]. Measurement and Control Technology, 2015,34 (1): 666-673.
[22] RAOSS.MechanicalVibrations[M].4thed.New Jersey:Prentice Hall,2004.
[23] 曹立帅,付春艳,李焕. 机载设备随机振动疲劳寿命仿真分析[J].装备制造技术,2018,12(5):42-44.
Cao Lishuai, Fu Chunyan, Li Huan. Simulation analysis of random vibration fatigue life of airborne equipment [J]. Equipment Manufacturing Technology, 2018, 12 (5):42-44.
[24] 严文军. 液压管路系统随机振动下疲劳分析[J].民用飞机设计与研究,2020,(1):1-5.
Yan Wenjun. Fatigue analysis of hydraulic pipeline system under random vibration [J]. Civil Aircraft Design and Research, 2020,(1):1-5.
[25] 曹海兰,李阳.离心通风机结构随机振动下的疲劳分析[J].内燃机与配件,2020,(13):39-41.
Cao Hailan, Li Yang. Fatigue analysis of centrifugal fan structures under random vibration [J]. Internal Combustion Engines and Accessories, 2020,(13):39-41.
[26] 吴剑飞,张鹏飞,栾涛. 民用飞机焊接管路建模及高周疲劳分析[J].民用飞机设计与研究,2021,(2):84-88.
Wu Jianfei, Zhang Pengfei, Luan Tao. Modeling and high-cycle fatigue analysis of civil aircraft welded pipelines [J]. Civil Aircraft Design and Research, 2021,(2):84-88.
[27] 马泽鹏,吴彦增,周畅,李哲,童军. 发动机喷管延伸段振动疲劳评估方法[J].强度与环境,2021,48(1):10-15.
Ma Zepeng, Wu Yanzeng, Zhou Chang, Li Zhe, Scout. Vibration fatigue assessment method for engine nozzle extension [J]. Intensity and Environment, 2021, 48 (1):10-15.
[28] 陈华,胡伟平,马爱军,李广利,等. 基于振动响应特性的结构随机振动损伤分析[J].机械设计与研究,2017,33(3):21-25.
Chen Hua, Hu Weiping, Ma Aijun, Li Guangli, et al. Random vibration damage analysis of structures based on vibration response characteristics [J]. Mechanical Design and Research, 2017, 33 (3):21-25.
[29] 张毅,郭银赛. 机载蒸发循环系统结构的随机振动疲劳析[J].科技通报,2018,34(6):123-126.
Zhang Yi, Guo Yinsai. Random vibration fatigue analysis of airborne evaporation cycle system structures [J]. Technology Bulletin, 2018, 34 (6):123-126.
[30] 王铁洪.力学与结构[M].天津:天津大学出版社,1989.
Wang Tiehong. Mechanics and structure [M]. Tianjin: Tianjin University Press, 1989.
[31] 关迪,范学领,肖滨,刘杰. 某型机载模块的随机振动疲劳分析[J].机械强度,2019,41(1):66-71.
Guan Di, Fan Xueling, Xiao Bin, Liu Jie. Random vibration fatigue analysis of an airborne module [J]. Mechanical Strength, 2019, 41 (1):66-71.
[32] 王宣博,王子龙,王君风,胡勇,韩世东. 基于三区间法的无人机发动机支架随机振动疲劳分析[J].电气与自动化,2021,50(6):216-219.
Wang Xuanbo, Wang Zilong, Wang Junfeng, Hu Yong, Han Shidong. Random vibration fatigue analysis of drone engine support based on three-interval method [J]. Electricity and Automation, 2021, 50 (6):216-219.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}