冲击载荷对动静压径向轴承时变热流体润滑特性的影响

苗新明1, 郭红1, 寇清硕1, 杨帅1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 49-57.

PDF(2174 KB)
PDF(2174 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 49-57.
冲击与爆炸

冲击载荷对动静压径向轴承时变热流体润滑特性的影响

  • 苗新明1,郭红*1,寇清硕1,杨帅1,2
作者信息 +

Influence of shock load on the transient thermal fluid lubrication characteristics of hybrid journal bearings

  • MIAO Xinming1,GUO Hong*1,KOU Qingshuo1,YANG Shuai1,2
Author information +
文章历史 +

摘要

本文综合流体力学、热力学、转子动力学等理论,建立冲击载荷作用下动静压轴承热流体数学模型,运用有限差分法和欧拉法等计算并分析冲击载荷对轴承热流体性能的影响。结果表明:动静压轴承受到冲击后承载力等参数呈现正弦变化趋势,轴心轨迹为闭合曲线;方向相反、幅值相等的冲击载荷使得动静压轴承承载力和轴心轨迹呈现对称变化趋势,冲击幅值每提高120N,水平承载力变化峰值增加33%-47%,竖直承载力变化峰值提升1.9%-2.3%;冲击载荷及轴承结构参数对最小油膜厚度影响显著,冲击幅值每增加120N,最小油膜厚度变化约0.3μm;计入温度场分布动静压轴承特性参数与等温模型相比,最大油膜压力值降低2%,最小油膜厚度降低7%,轴心轨迹变化趋势一致,但初始位置相差较大。

Abstract

This article integrates theories of fluid mechanics, thermodynamics, and rotor dynamics to establish a mathematical model for the pressure field, temperature field, and characteristic parameters of hybrid bearings under shock loads. The finite difference method and Euler method are used to calculate and analyze the impact of shock loads on the thermal fluid performance of bearings. The results show that the axis trajectory of the hybrid bearings after being subjected to shock is a closed curve, and the parameters such as bearing capacity show a sinusoidal variation trend. Shock loads with opposite directions and equal amplitudes make the bearing capacity and axis trajectory of the hybrid bearing show a symmetrical variation trend. For every 120N increase in shock amplitude, the peak value of horizontal bearing capacity change increases by about 33%-47%, and the peak value of vertical bearing capacity change increases by about 1.9%-2.3%; When the shock parameters or structural parameters of the bearing change, the minimum oil film thickness of the bearing changes significantly. For example, for every 120N increase in shock amplitude, the minimum oil film thickness changes by about 0.3 μ m; The maximum oil film pressure, which takes into account the thermal effect, is reduced by about 2% compared to the results of the isothermal model, the minimum oil film thickness is reduced by about 7%. The initial position of the axis trajectory changes significantly, but the trend of parameter changes remains basically unchanged.

关键词

动静压轴承 / 温度场 / 压力场 / 冲击载荷 / 轴心轨迹

Key words

hybrid bearing / temperature distribution / pressure distribution / shock / axis trajectory

引用本文

导出引用
苗新明1, 郭红1, 寇清硕1, 杨帅1, 2. 冲击载荷对动静压径向轴承时变热流体润滑特性的影响[J]. 振动与冲击, 2025, 44(10): 49-57
MIAO Xinming1, GUO Hong1, KOU Qingshuo1, YANG Shuai1, 2. Influence of shock load on the transient thermal fluid lubrication characteristics of hybrid journal bearings[J]. Journal of Vibration and Shock, 2025, 44(10): 49-57

参考文献

[1] 曾良辉. 基于流固耦合的船用中间轴承抗冲击性能分析与优化研究[D]. 华中科技大学, 2023.
[2] 季东生, 沈景凤, 陈雨飞等. 液体动静压球形轴承动态特性分析[J]. 机械强度, 2022, 44(02): 309-316.
JI D S, SHEN J F, CHEN Y F, et al. Dynamic characteristics analysis of spherical hybrid sliding bearings[J]. Journal of Mechanical Strength, 2022, 44(02):309-316.
[3] 郑学刚, 史本岩. 气体动静压轴承结构参数的优化设计[J]. 装备制造技术, 2023(09): 68-71.
ZHENG X G, SHI B Y. Optimization design of structural parameters for gas dynamic and static pressure bearings[J]. Equipment Manufacturing Technology, 2023(09): 68-71.
[4] 贾谦, 林铿, 杨帅等. 结构和工况参数对电主轴动静压轴承性能的影响[J]. 航空动力学报, 2023, 38(05): 1270-1280.
JIA Q, LIN K, YANG S, et al. Influence of structure and working condition parameters on performance of motorized spindle’s hybrid bearings[J]. Journal of Aerospace Power, 2023, 38(05): 1270-1280.
[5] 张耀满, 于德光, 杨清波. 深浅腔动静压轴承油膜特性[J]. 东北大学学报(自然科学版), 2018, 39(10): 1490-1494.
ZHANG Y M, YU D G, YANG Q B. Oil Film Characteristics of Deep-Shallow Pocket Hybrid Bearing[J]. Journal of Northeastern University (Natural Science), 2018, 39(10): 1490-1494.
[6] KUMAR V, SHARMA S C. Effect of geometric shape of micro-grooves on the performance of textured hybrid thrust pad bearing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41 (11): 24.
[7] SHAO J P, LIU G D, YU X D. Simulation and experiment on pressure field characteristics of hydrostatic hydrodynamic hybrid thrust bearings[J]. Industrial Lubrication and Tribology, 2019, 71(1): 102-108.
[8] 杨帅, 郭红, 张泽斌. 热效应对径向浮环轴承最小油膜厚度及稳定性影响研究[J]. 振动与冲击, 2020, 39(18): 215-222.
YANG S, GUO H, ZHANG Z B. Thermal effect on the minimum film thickness and stability for a journal floating ring bearing[J]. Journal of Vibration and Shock, 2022, 39(18):215-222.
[9] 刘蕾, 刘保国, 王攀等. 液体动静压轴承油膜的压力场和温度场分析[J]. 机电工程, 2019, 36(9): 900-906.
LIU L, LIU B G, WANG P, et al. Analysis of oil film pressure field and temperature field of hydrodynamic and hydrostatic bearing[J]. Journal of Mechanical & Electrical Engineering, 2019, 36(09):900-906.
[10] LU D, LIU K J, ZHAO W H, et al. Thermal characteristics of water-lubricated ceramic hydros-tatic hydrodynamic hybrid bearings[J]. Tribology Letters, 2016, 63(2).
[11] REN T M, FENG M. Anti-shock characterist-ics of water lubricated bearing for fuel cell vehicle air compressor[J]. Tribology International, 2017, 107: 56-64.
[12] Peng Liang, Xingyang Li, et al. Influence of sea wave shock on transient start-up performance of water-lubricated bearing[J]. Tribology International, 2022(167): 107332.
[13] Xiang G, Yang T Y, Ning Q, et al. Numerical study on transient mixed lubrication response for multiple grooves water-lubricated bearings under non-linear shock with 3D thermal effect[J]. Surface Topography-metrology and Properties, 2021, 9(3): 035014.
[14] Tao Y R, Zhao J, Feng S Z. A reliability assessment model for journal bearing based on natural degradation and random shocks[J]. Journal of Mechanical Science and Technology, 2020. 34(11): 4641-4648.
[15] 张胜伦, 裴世源, 徐华等. 考虑瞬态冲击和弹性变形的滑动轴承特性与动力学响应[J]. 西安交通大学学报, 2018. 52(1): 100-106, 114.
ZHANG S L, PEI Y, XU H, et al. Journal bearing properties and dynamic responses under transient impact load and elastic deformation[J]. Journal of Xi’an Jiaotong Univercity, 2018, 52(01):100-106,114.
[16] 谢奕浓, 王优强, 宋晓萍等. 启动振动与海浪冲击耦合时变UHMWPE轴承润滑分析[J]. 振动与冲击, 2019. 38(24): 144-149.
XIE Y N, WANG Y Q, SONG X P, et al. Transient lubrication analysis of UHMWPE bearings during start-up with vibration and shock[J]. Journal of Vibration and Shock, 2019. 38(24): 144-149.
[17] 聂卫健, 卢愈, 唐广等. 航空发动机转子在冲击载荷下的振动响应分析与试验[J]. 振动与冲击, 2023. 42(22): 339-344.
NIE Weijian, LU Yu, TANG Guang, et al. Analysis and test on the vibration response of an aero-engine rotor under impact load[J]. Journal of Vibration and Shock, 2023. 42(22): 339-344.
[18] 周鑫, 戚社苗, 刘恒.考虑弹性变形的推力轴承抗冲击特性分析[J]. 振动与冲击, 2021, 40(15): 73-78+89.
ZHOU X, QI S M, LIU H. Anti-impact characteristics of thrust bearing considering elastic deformation[J]. Journal of Vibration and Shock, 2021, 40(15): 73-78+89.
[19] 向果. 水润滑轴承系统动态摩擦学与摩擦激励振动机理研究[D]. 重庆大学, 2022. 
[20] Sun FX, Zhang XB, Wang X, et al. Effects of Shaft Shape Errors on the Dynamic Characteristics of a Rotor-Bearing System[J]. Journal of Tribology-Transactions of the Asme, 2019, 141 (10): 9.
[21] Zoupas L, Wodtke M, Papadopoulos CI, et al. Effect of manufacturing errors of the pad sliding surface on the performance of the hydrodynamic thrust bearing[J]. Tribology International, 2019, 134: 211-220. 
[22] 冯麟涵, 汪玉, 计晨. 考虑油膜力作用的滑动轴承冲击响应特性试验研究[J]. 机械强度, 2016, 38(2): 259-264.
FENG L H, WANG Y, JI C. Experimental Study On Shock Response Characteristics of Sliding Bearing With Oil Film Force Consideration[J]. Journal of Mechanical Strength, 2016, 38(2): 259-264.
[23] He S, Zhang P, Yu X. Dynamic behaviors of a rotor-bearing system under base-transferred shock excitations considering journal-bearing clearance[J]. Applied Mechanics and Materials, 2010, 29-32: 703-708.
[24] 郭红, 刘豪杰, 张绍林等. 动静压轴承油膜温度场特性分析与实验研究[J]. 润滑与密封, 2015, 40(5): 1-4, 30.
Guo Hong, Liu Haojie, Zhang Shaolin, et al. Performance Analysis and Experiment Research on Oil Film Temperature of Hybrid Bearing[J]. Lubrication Engineering, 2015, 40(5): 1-4, 30.

PDF(2174 KB)

77

Accesses

0

Citation

Detail

段落导航
相关文章

/