基于Kriging代理模型的新型箱梁气动外形优化

白桦1, 叶茂2, 杨光1, 高广中1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 58-65.

PDF(1711 KB)
PDF(1711 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 58-65.
振动理论与交叉研究

基于Kriging代理模型的新型箱梁气动外形优化

  • 白桦*1,叶茂2,杨光1,高广中1
作者信息 +

Aerodynamic shape optimization of a new box girder based on the Kriging surrogate model

  • BAI Hua*1,YE Mao2,YANG Guang1,GAO Guangzhong1
Author information +
文章历史 +

摘要

为解决传统的桥梁断面气动措施优化方法优化效率低下且搜索范围有限等缺点,提出了一种由风洞试验驱动,将Kriging代理模型和多点搜索策略相结合的主梁断面气动外形优化方法,对2000m级悬索桥新型箱梁断面在倒L型导流板的水平板宽度L、下中央稳定板高度H和检修车轨道位置J构成的多参数设计空间内的气动外形进行优化。首先使用改进拉丁超立方试验设计方法获取设计空间内的初始样本点,通过风洞试验获得初始样本的颤振临界风速;然后建立设计参数和颤振临界风速的初始Kriging代理模型;接着使用新提出的并行加点准则添加更新点更新代理模型。最终优化获得了颤振性能最佳断面匹配的设计参数,通过风洞试验验证了优化结果的正确性。结果表明:Kriging代理模型结合多点搜索策略对桥梁断面气动外形进行优化,显著提高了优化效率;最优断面的颤振临界风速比原断面提高了51%,比单独设置倒L型导流板时提高了13%;倒L型导流板的水平板宽度L对颤振性能影响程度最为显著。

Abstract

In order to solve the shortcomings of low optimization efficiency and limited search range of traditional aerodynamic measures optimization methods for bridge sections, a wind tunnel test-driven aerodynamic shape optimization method for main girder sections is proposed, which combines Kriging surrogate model and multi-point search strategy. The aerodynamic shape of the new box girder section of the 2000 m suspension bridge is optimized in the multi-parameter design space composed of the horizontal plate width L of the inverted L-shaped deflector, the height H of the lower central stabilizer and the track position J of the maintenance vehicle. Firstly, the improved Latin hypercube experimental design method is used to obtain the initial sample points in the design space, and the flutter critical wind speed of the initial sample is obtained by wind tunnel test. Then, the initial Kriging surrogate model of design parameters and flutter critical wind speed is established. Then, the update point update proxy model is added using the newly proposed parallel add-point criterion. Finally, the design parameters of the best section matching of flutter performance are obtained by optimization, and the correctness of the optimization results is verified by wind tunnel test. The results show that the Kriging surrogate model combined with the multi-point search strategy optimizes the aerodynamic shape of the bridge section, which significantly improves the optimization efficiency. The flutter critical wind speed of the optimal section is 51 % higher than that of the original section, and 13 % higher than that of the inverted L-shaped baffle alone. The horizontal plate width L of the inverted L-shaped deflector has the most significant influence on the flutter performance.

关键词

桥梁工程;气动外形优化;Kriging代理模型;风洞试验;箱梁;颤振性能  /

Key words

bridge engineering / aerodynamic shape optimization / kriging surrogate model / wind-tunnel test / box girder / flutter characteristics

引用本文

导出引用
白桦1, 叶茂2, 杨光1, 高广中1. 基于Kriging代理模型的新型箱梁气动外形优化[J]. 振动与冲击, 2025, 44(10): 58-65
BAI Hua1, YE Mao2, YANG Guang1, GAO Guangzhong1. Aerodynamic shape optimization of a new box girder based on the Kriging surrogate model[J]. Journal of Vibration and Shock, 2025, 44(10): 58-65

参考文献

[1] 朱进波, 郑史雄, 唐煜, 等. 流线型箱梁断面的非线性颤振幅值特性研究[J]. 振动与冲击, 2018, 37(24): 158-165.
ZHU Jin-bo, ZHENG Shi-xiong, TANG Yu, et al. A Study on The Nonlinear Flutter Amplitude Characteristics of A Streamlined Box Girder Section [J]. Journal of Vibration and Shock, 2018, 37(24): 158-165.
[2] 杨詠昕, 葛耀君, 项海帆. 中央稳定板颤振控制效果和机理研究[J]. 同济大学学报(自然科学版), 2007(02): 149-155.
YANG Yong-xin, GE Yao-jun, XIANG Hai-fan. Flutter Controlling Effect and Mechanism of Central Stabilizer[J].Journal of Tongji University (Natural Science ), 2007 (02): 149-155.
[3] 黄林, 王骑, 赵文斌, 等. 上中央与侧边稳定板对扁平箱梁气动性能的影响[J]. 公路交通科技, 2023, 40(08): 111-118.
HUANG Lin, WANG Qi, ZhAO Wen-bin, etc. Influence of Upper Central and Side Stabilizers on Aerodynamic Performance of Flat Box Girder [J]. Journal of Highway and Transportation Research and Development, 2023, 40(08): 111-118.
[4] 白桦, 李宇, 李加武, 等. 钢桁架悬索桥颤振稳定性能研究[J]. 振动与冲击, 2013, 32(04): 90-95.
BAI Hua, LI Yu, LI Jia-wu, et al. Flutter Stability of A Steel Truss Girder Suspension Bridge[J]. Journal of Vibration and Shock, 2013,32 (04): 90-95.
[5] 张宏杰, 朱乐东. 箱形主梁悬臂水平分离板的颤振控制效果与机理[J]. 同济大学学报(自然科学版), 2011, 39(11): 1569-1574.
ZHANG Hong-jie, ZHU Le-dong. Control Effect and Mechanism of Cantilever Horizontal Separation Plates on Flutter Performance of A Box Deck[J]. Journal of Tongji University ( Natural Science ), 2011, 39(11): 1569-1574.
[6] 陈应高, 康佳, 唐浩俊, 等. 高陡山区大跨度钢箱梁悬索桥风致振动试验和气动外形优化[J]. 振动与冲击, 2023, 42(18): 241-249.
CHEN Ying-gao, Kang Jia, Tang Haojun, etc. Wind-induced Vibration Test and Aerodynamic optimization of A Long-span Suspenssteel Bridge with Steel Box Girder Located in Cliffy Mountainous Areas[J]. Journal of Vibration and Shock, 2023, 42(18): 241-249.
[7] 宋锦忠, 林志兴, 徐建英. 桥梁抗风气动措施的研究及应用[J]. 同济大学学报(自然科学版), 2002(05): 618-621.
SONG Jin-zhong, LIN Zhi-xing, XU Jian-ying. Research and Application of Aerodynamic Measures About Wind-resistance of Bridges[J]. Journal of Tongji University ( Natural Science ), 2002(05): 618-621.
[8] 郝冬. 风嘴对桥梁颤振稳定性影响的研究[D].长安大学,2012.
HAO Dong. The Study of The Effect of Tuyere on Bridge Flutter Stability[D]. Chang 'an University, 2012.
[9] 王骑, 廖海黎, 李明水, 等. 流线型箱梁气动外形对桥梁颤振和涡振的影响[J]. 公路交通科技, 2012, 29(08): 44-50.
WANG Qi, LIAO Hai-li, LL Ming-shui, et al. Influence of Aerodynamic Shape of Streamlined Box Girder Flutter and Vortex-induced Vibration[J]. Journal of Highway and Transportation Research and Development, 2012, 29(08): 44-50.
[10] 赵林, 李珂, 王昌将, 等. 大跨桥梁主梁风致稳定性被动气动控制措施综述[J]. 中国公路学报, 2019, 32(10): 34-48.
ZHAO Lin, LI Ke, WANG Chang-jiang et al. Review on Passive Aerodynamic Countermeasures on Main Girders Aiming at Wind-induced Stabilities of Long-span Bridges[J]. China Journal of Highway and Transport, 2019, 32(10): 34-48.
[11] 李加武, 潘辉, 高广中, 等. 扁平钢箱梁颤振气动措施试验研究[J]. 公路交通科技, 2021, 38(01): 69-78.
LI Jia-wu, PAN Hui, GAO Guang-zhong, et al. Experimental Study on Aerodynamic Measures for Flutter of Flat Steel Box Girder[J]. Journal of Highway and Transportation Research and Development, 2021, 38(01):69-78.
[12] 黄林, 廖海黎, 王骑等. 2300 m超大跨度扁平钢箱梁悬索桥颤振稳定性优化研究[J]. 振动与冲击, 2022, 41(14): 210-217.
HUANG Lin, LIAO Hai-Li, Wang Qi, et al. Flutter stability optimization of a 2300 m super long-span flat steel box girder suspension bridge[J]. Journal of Vibration and Shock, 2022,41(14): 210-217.
[13] 夏锦林, 杨詠昕, 葛耀君. 上、下组合中央稳定板对于箱梁颤振性能的影响[J]. 中国公路学报, 2017, 30(07): 86-93.
XIA Jin-lin, YANG Yong-xin, GE Yao-jun. Influence of Combined Central Stabilizing Plates on Flutter Performances of Box Girder[J]. China Journal of Highway and Transport, 2017, 30(07): 86-93.
[14] 邹小洁, 杨詠昕, 葛耀君. 大跨度悬索桥钢箱加劲梁中央开槽的颤振控制机理[J]. 力学季刊, 2007(02): 187-194.
ZOU Xiao-jie, YANG Yong-xin, GE Yao-jun. Flutter Mitigation of Long Span Suspension Bridges with Central Slotted Box Girders[J]. Chinese Quarterly of Mechanics, 2007(02): 187-194.
[15] 赵林, 方根深, 展艳艳等. 基于试验设计与代理模型的中央开槽箱梁气动外形优化方法[J]. 桥梁建设, 2022, 52(06): 25-32.
ZHAO Lin, FANG Gen-shen, ZHAN Yan-yan. et al. Aerodynamic Shape Optimization Method for Split Box Girder Experimental Design and Surrogate model[J]. Bridge Construction, 2022, 52(06): 25-32.
[16] 王兆勇, 郑朝荣, Mulyanto Joshua Adriel等. 基于代理模型的方形凹角截面超高层建筑气动外形优化[J]. 土木工程学报, 2023, 56(04): 1-11.
WANG Zhao-yong, ZHENG Chao-rong, Mulyanto Joshua Adriel et al. Aerodynamic Shape Optimization of A Square Supertall Building with Recession Based on Surrogate Model[J]. China Civil Engineering Journal, 2023, 56(04): 1-11.
[17] 孙强, 周志勇, 胡传新等. 流线型箱梁气动外形的数值优化[J]. 哈尔滨工业大学学报, 2021, 53(10): 93-100.
SUN Qiang, ZHOU Zhi-yong, HU Chuan-xin, et al. Numerical Aerodynamic Shape optimization of Streamlined Box Girder[J]. Journal of Harbin Institute of Technology, 2021, 53(10): 93-100.
[18] 刘汉云, 陈柏翔, 韩艳等. 基于WOA-GRNN代理模型的Π形截面梁风嘴气动外形优化[J]. 中国公路学报, 2023, 36(08): 76-86.
LIU Han-yun, CHEN Bai-xiang, HAN Yan et al. Aerodynamic Shape Optimization of Π-Shaped Composite Bridge Deck with Wind Fairing Based on WOA-GRNN Surrogate Model[J]. China Journal of Highway and Transport, 2023,36(08): 76-86.
[19] Montoya M C, Nieto F, Hernandez S, et al. Optimization of bridges with short gap streamlined twin-box decks considering structural, flutter and buffeting performance[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104316
[20] 吴明远, 廉向东, 张伟等. 四千米级悬索桥新型结构体系研究[J]. 中国公路学报, 2023, 36(07): 204-211.
WU Ming-yuan, LIAN Xiang-dong, ZHANG Wei, et al. New Structure System for 4000m Class Suspension Bridge[J]. China Journal of Highway and Transport ,2023, 36(07): 204-211.
[21] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.
HAN Zhong-hua. Kriging Surrogate Model and its Application to Design optimization: A Review of Recent Progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225.
[22] 方开泰. 均匀试验设计的理论、方法和应用——历史回顾[J]. 数理统计与管理, 2004, (03):69-80.
FANG Kai-tai. Theory, Method and Application of Uniform Experimental Design-Historical Review[J]. Jouranl of Applied Statistics and Management, 2004, (03): 69-80.
[23] Lophaven S N, Nielsen H. B. DACE-A MATLAB Kriging Toolbox[J]. 2002.
[24] 齐霁. 基于留一交叉验证的拟合优度比较研究[D]. 山东大学, 2023.
Qi Ji. A Comparative Study of Goodness of Fit Based on Leave-one-out Cross Validation[D]. Shandong University, 2023.
[25] 王家恒. 基于Kriging模型的多目标优化方法研究[D].大连理工大学,2020.
WANG Jia-heng. Research on Multi-Objective Optimization Method Based on Kriging Surrogate Model[D]. Dalian University of Technology, 2020.
[26] Han Z H, Görtz S. Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling[J]. Aiaa Journal, 50(9), 1885-1896
[27] 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(05): 30-70.
HAN Zhong-hua, XU Chen-zhou, QIAO Jian-ling, et.al. Recent Progress of Efficient Global Aerodynamic Shape optimization Using Surrogate-based Approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(05): 30-70.
[28] Jones D. R, Schonlau M, Welch W. J. Efficient Global Optimization of Expensive Black-Box Functions[J]. Journal of Global Optimization, 1998, 13(4):455-492
[29] 詹大为. 并行EGO算法研究及其应用[D]. 华中科技大学, 2019.
ZhAN Da-wei. Parallel EGO Algorithm and Their Applications[D]. Huazhong University of Science and Technology, 2019.
[30] 郭萍. 有交互影响的三因素方差分析的应用及MATLAB实现[J]. 沈阳大学学报(自然科学版), 2019, 31(03): 252-256.
Guo Ping. Application of Three-factor ANOVA with interaction and MATLAB Implementation[J]. Journal of Shenyang University(Natural Science), 2019, 31(03): 252-256.

PDF(1711 KB)

Accesses

Citation

Detail

段落导航
相关文章

/