磁浮球系统辨识与IMC-PID参数整定方法研究

冯悦昕1, 张鹏辉2, 邹晋彬2, 邓自刚2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 66-75.

PDF(2370 KB)
PDF(2370 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 66-75.
振动理论与交叉研究

磁浮球系统辨识与IMC-PID参数整定方法研究

  • 冯悦昕1,张鹏辉2,邹晋彬2,邓自刚*2
作者信息 +

System identification and IMC-PID parameter tuning method for a maglev ball system

  • FENG Yuexin1,ZHANG Penghui2,ZOU Jinbin2,DENG Zigang*2
Author information +
文章历史 +

摘要

磁浮球作为典型的电磁悬浮系统,需要准确的理论模型以进行精密控制,因此提出一种基于修正电磁力公式的系统辨识方法及 IMC-PID 控制器,有效提高理论模型的精确度与参数整定的效率。首先,分析了电磁力公式的推导过程,建立了电磁仿真模型,对电磁力–悬浮间隙、偏置电流公式进行了修正。其次,通过采集实际电流对正弦目标信号的响应,确定了在相同电磁力下偏置电流与悬浮间隙之间的关系。使用不同质量的钢球进行上述步骤,即可得到不同电磁力下悬浮间隙与偏置电流对应关系。采用修正后的公式进行拟合,得到磁浮球实物的参数具体值。结合动力学方程,并定义平衡点处的悬浮间隙与偏置电流为位移和控制电流,推导出磁浮球系统的位移、电流刚度及精确传递函数。最后,基于内模控制理论设计 IMC-PID 控制器,通过单个参数计算出 PID 全部参数,并进行了控制仿真与实验验证。实验结果表明,系统辨识得到的理论模型与实物系统的响应高度吻合,验证了系统辨识结果的准确性,IMC-PID 控制器也大大提高了参数整定效率。

Abstract

As a typical system for electromagnetic levitation, the maglev ball requires an accurate theoretical model for precise control. Therefore, a system identification method based on a revised electromagnetic force formula and an IMC-PID controller is proposed, which effectively improves the accuracy of the theoretical model and the efficiency of parameter tuning. Firstly, the derivation process of the electromagnetic force formula is analyzed, and an electromagnetic simulation model is established. The formula for the electromagnetic force-levitation gap and bias current is revised. Secondly, by collecting the response of the actual current to the sinusoidal target signal, the relationship between the bias current and the levitation gap under the same electromagnetic force is obtained. The above steps are performed using steel balls of different masses, thus the relationship between the levitation gap and the bias current under different electromagnetic forces is obtained. The revised formula is used for fitting, resulting in the specific values of the parameters for the physical system of the maglev ball. Combining the dynamic equations, the levitation gap and bias current at the equilibrium point are defined as displacement and control current, respectively. The displacement stiffness, current stiffness, and precise transfer function of the maglev ball system are derived. Finally, based on the internal model control theory, an IMC-PID controller is designed. All PID parameters are calculated through a single parameter, and control simulation and experimental verification are carried out. The experimental results show that the theoretical model obtained from system identification matches the response of the physical system highly, verifying the accuracy of the system identification results. The IMC-PID controller also significantly improves the efficiency of parameter tuning.

关键词

磁浮球 / 电磁力公式 / 系统辨识 / 内模控制

Key words

maglev ball / electromagnetic force formula / system identification / internal mode control

引用本文

导出引用
冯悦昕1, 张鹏辉2, 邹晋彬2, 邓自刚2. 磁浮球系统辨识与IMC-PID参数整定方法研究[J]. 振动与冲击, 2025, 44(10): 66-75
FENG Yuexin1, ZHANG Penghui2, ZOU Jinbin2, DENG Zigang2. System identification and IMC-PID parameter tuning method for a maglev ball system[J]. Journal of Vibration and Shock, 2025, 44(10): 66-75

参考文献

[1] Lee H-W, Kim K-C, Lee J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917–1925.
[2] 邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474+530
DENG Zigang, LIU Zongxin, LI Haitao, et al. Development Status and Prospect of Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474+530.
[3] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40–49
XU Fei, LUO Shihui, DENG Zigang. Study on Key Technologies and Whole Speed Range Application of Maglev Rail Transport[J]. Journal of the China Railway Society, 2019, 41(3): 40–49.
[4] Matsumura F, Okada Y, Fujita M, et al. State of the Art of Magnetic Bearings : Overview of Magnetic Bearing Research and Applications[J]. JSME International Journal Series C, 1997, 40(4): 553–560.
[5] 谢彩琴, 张钢, 袁坤鹏, 等. 基于ANSYS的鼓风机电动机永磁轴承-转子系统动力学分析[J]. 轴承, 2019(2): 12–16
XIE Caiqin, ZHANG Gang, YUAN Kunpeng, et al. Dynamics Analysis on Permanent Magnetic Bearing - Rotor System of Blower Motor Based on ANSYS[J]. Bearing, 2019(2): 12–16.
[6] 武倩倩, 陈尚, 陈永强, 等. 磁悬浮隔振系统非线性动力学建模与仿真[J]. 振动与冲击, 2015, 34(20): 161–166
WU Qianqian, CHEN Shang, CHEN Yongqiang, et al. Nonlinear dynamics modeling and simulation of maglev vibration isolation system[J]. Journal of Vibration and Shock, 2015, 34(20): 161–166.
[7] Hoshi H, Shinshi T, Takatani S. Third‐generation Blood Pumps With Mechanical Noncontact Magnetic Bearings[J]. Artificial Organs, 2006, 30(5): 324–338.
[8] 陈亚栋, 张井岗, 赵志诚. 磁浮球系统的二自由度控制[J]. 江南大学学报(自然科学版), 2015, 14(6): 741–745
CHEN Yadong, ZHANG Jinggang, ZHAO Zhicheng. 2-DOF Control Scheme for Magnetic Levitation Ball System[J]. Journal of Jiangnan University (Natural Science Edition), 2015, 14(6): 741–745.
[9] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198
XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198.
[10] 张昌琪, 曾喆昭, 王伟. 基于ACPI的磁浮球系统控制方法[J]. 铁道科学与工程学报, 2024, 21(3): 1180–1188
ZHANG Changqi, ZENG Zhezhao, WANG Wei. Control method of magnetic levitation ball system based on ACPI[J]. Journal of Railway Science and Engineering, 2024, 21(3): 1180–1188.
[11] 张振利, 汪永壮, 秦耀, 等. 基于Levant微分器的磁浮球控制算法研究[J/OL]. 系统仿真学报, 2023[2024–06–26]
Zhang Zhenli, Wang Yongzhuang, Qin Yao, et al. Research on Maglev Ball Control Algorithm based on Levant Differentiator[J/OL]. Journal of System Simulation, 2023[2024–06–26].
[12] Sun Y, Xu J, Lin G, et al. Adaptive neural network control for maglev vehicle systems with time-varying mass and external disturbance[J]. Neural Computing and Applications, 2023, 35(17): 12361–12372.
[13] 邹晋彬, 易辉阳, 张鹏辉, 等. 基于Q-Learning-MPC的四自由度磁浮轴承控制策略研究[J/OL]. 轴承, 2023[2024–06–27]
ZOU Jinbin, YI Huiyang, ZHANG Penghui, et al. Research on Control Strategy of Four Degrees of Freedom Magnetic Bearing Based on Q-Learning-MPC[J/OL]. Bearing, 2023[2024–06–27].
[14] Yang D, Gao X, Cui E, et al. State-Constraints Adaptive Backstepping Control for Active Magnetic Bearings With Parameters Nonstationarities and Uncertainties[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10): 9822–9831.
[15] Chen C, Xu J, Lin G, et al. Model identification and nonlinear adaptive control of suspension system of high-speed maglev train[J]. Vehicle System Dynamics, 2022, 60(3): 884–905.
[16] Ni F, Mu S, Kang J, et al. Robust Controller Design for Maglev Suspension Systems Based on Improved Suspension Force Model[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1765–1779.
[17] Mottershead J E, Friswell M I. Model Updating In Structural Dynamics: A Survey[J]. Journal of Sound and Vibration, 1993, 167(2): 347–375.
[18] 李昱, 袁磊. 线性系统的系统辨识综述[J]. 探测与控制学报, 2021, 43(3): 22–29
LI Yu, YUAN Lei. Overview on System Identification for Linear Systems[J]. Journal of Detection & Control, 2021, 43(3): 22–29.
[19] 舒迪前. 预测控制系统及其应用[M]. 机械工业出版社, 1996
SHU Diqian. Predictive control systems and their applications[M]. China Machine Press, 1996.
[20] 赵曜. 内模控制发展综述[J]. 信息与控制, 2000(6): 526–531
ZHAO Yao. A Survey of Development of Internal Model Control[J]. Information and Control, 2000(6): 526–531.
[21] Morari M, Zafiriou E. Robust Process Control[M]. Morari, 1989.

PDF(2370 KB)

71

Accesses

0

Citation

Detail

段落导航
相关文章

/