硫酸盐侵蚀前后叠堆型压电智能骨料的俘能特性实验研究

兰成明1, 雷富杰1, 王建军2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 84-96.

PDF(3274 KB)
PDF(3274 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (10) : 84-96.
振动理论与交叉研究

硫酸盐侵蚀前后叠堆型压电智能骨料的俘能特性实验研究

  • 兰成明1 ,雷富杰1,王建军*2
作者信息 +

Experimental study on the energy harvesting performance of stacked piezoelectric smart aggregates before and after sulfate attack

  • LAN Chengming1,LEI Fujie1,WANG Jianjun*2
Author information +
文章历史 +

摘要

压电智能骨料是一种具备优异力电耦合性能的智能器件,已经广泛应用于土木工程领域的结构健康监测。然而,目前主要侧重于器件的驱动和传感特性,而对于器件的俘能特性尚未研究。此外,器件嵌入到混凝土结构或土体中工作时可能会受到硫酸盐的侵蚀,进而影响其工作性能,但关于器件抗侵蚀能力的研究鲜有报道。基于此,以叠堆型压电智能骨料为研究对象,首先测试了器件在简谐荷载和轨枕力作用下的俘能特性,然后开展了121天的硫酸钠溶液侵蚀实验,并对侵蚀后的器件俘能特性以及承载能力进行了测试分析。研究结果表明:叠堆型压电智能骨料具有良好的俘能水平,但受硫酸盐侵蚀影响较大;侵蚀后的器件仍具备良好的电导特征,并且具有良好的承载能力,承载力均保持在75kN以上。

Abstract

Piezoelectric smart aggregates are intelligent devices with excellent force-electric coupling performance and have been widely applied in structural health monitoring within the civil engineering field. However, current research primarily focuses on the driving and sensing characteristics of these devices, while their energy harvesting capabilities have not been extensively studied. Additionally, when these devices are embedded in concrete structures or soil, they may be subjected to sulfate attack, which could impact their performance. Despite this, research on the resistance of these devices to sulfate attack is still limited. Therefore, this study focuses on the stacked piezoelectric smart aggregate. Initially, the energy harvesting characteristics of the device under harmonic load and rail-sleeper force were tested. Subsequently, a 121-day experiment was conducted in a sodium sulfate solution to simulate sulfate attack, and the energy harvesting characteristics and load-bearing capacity of the device were assessed after the sulfate attack. The results indicate that stacked piezoelectric smart aggregates exhibit excellent energy harvesting performance, though they are significantly affected by sulfate attack. Even after the sulfate attack, the devices maintain favorable conductance characteristics and demonstrate strong load-bearing capacity, with all load capacities exceeding 75kN.

关键词

压电阻抗法 / 硫酸盐侵蚀 / 俘能 / 结构健康监测 / 叠堆型压电智能骨料

Key words

sulfate attack / energy harvesting / structural health monitoring / stacked piezoelectric smart aggregates

引用本文

导出引用
兰成明1, 雷富杰1, 王建军2. 硫酸盐侵蚀前后叠堆型压电智能骨料的俘能特性实验研究[J]. 振动与冲击, 2025, 44(10): 84-96
LAN Chengming1, LEI Fujie1, WANG Jianjun2. Experimental study on the energy harvesting performance of stacked piezoelectric smart aggregates before and after sulfate attack[J]. Journal of Vibration and Shock, 2025, 44(10): 84-96

参考文献

[1] HUO L S, CHENG H, KONG Q Z, et al. Bond-Slip Monitoring of Concrete Structures Using Smart SensorsA Review [J]. Sensors, 2019, 19(5): 1231.
[2] SONG G B, GU H C, MO Y L. Smart aggregates: multi-functional sensors for concrete structures - a tutorial and a review [J]. Smart Materials and Structures, 2008, 17(3): 033001.
[3] 孙威, 阎石, 焦莉, 等. 基于压电波动法的混凝土裂缝损伤监测技术 [J]. 工程力学, 2013, 30(S1): 206-211.
Sun Wei, Yan Shi, Jiao Li, et al. Concrete crack damage monitoring technology based on piezoelectric vibration method [J]. Engineering Mechanics, 2013, 30(S1): 206-211.
[4] SONG G, GU H, MO Y L, et al. Concrete structural health monitoring using embedded piezoceramic transducers [J]. Smart Materials and Structures, 2007, 16(4): 959-968.
[5] 蒙彦宇, 阎石, 孙威, 等. 压电混凝土梁主动健康监测试验 [J]. 沈阳建筑大学学报(自然科学版), 2011, 27(02): 253-259.
Meng Yanyu, Yan Shi, Sun Wei, et al. Active health monitoring experiment of piezoelectric concrete beams [J]. Journal of Shenyang Jianzhu University (Natural science edition), 2011, 27(02): 253-259.
[6] LIAO W-I, LIN C H, HWANG J S, et al. Seismic health monitoring of RC frame structures using smart aggregates [J]. Earthquake Engineering and Engineering Vibration, 2013, 12(1): 25-32.
[7] HOU S, ZHANG H B, OU J P. A PZT-based smart aggregate for compressive seismic stress monitoring [J]. Smart Materials and Structures, 2012, 21(10): 105035.
[8] WANG J J, KONG Q Z, SHI Z F, et al. Electromechanical properties of smart aggregate: theoretical modeling and experimental validation [J]. Smart Materials and Structures, 2016, 25(9): 095008.
[9] KONG Q, HOU S, JI Q, et al. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates [J]. Smart Materials and Structures, 2013, 22(8): 085025.
[10] ZHANG C, YAN Q X, XIONG Z Y, et al. Diagnosis and assessment of cyclic freeze-thaw damage in tunnel lining concrete using piezoelectric-based electromechanical impedance technique [J]. Measurement, 2024, 238: 115370.
[11] 齐宝欣, 李茉, 刘东, 等. 基于压电主动传感技术的高温后PVA-ECC梁冲击损伤监测研究 [J]. 建筑科学与工程学报, 2018, 35(05): 233-240.
Qi Baoxin, Li Mo, Liu Dong, et al. Research on impact damage monitoring of high-temperature PVA-ECC beams based on piezoelectric active sensing technology [J]. Journal of Architectural Science and Engineering, 2018, 35(05): 233-240.
[12] ZHANG H, LI J J, KANG F, et al. Monitoring depth and width of cracks in underwater concrete structures using embedded smart aggregates [J]. Measurement, 2022, 204: 112078.
[13] 廖恒, 吴方红, 李召, 等. 基于压电智能骨料的钢管混凝土柱冲击应力监测与数值模拟 [J]. 土木工程与管理学报, 2018, 35(05): 159-164.
Liao Heng, Wu Fanghong, Li Zhao, et al. Impact stress monitoring and numerical simulation of concrete-filled steel tubular columns based on piezoelectric smart aggregates [J]. Journal of Civil Engineering and Management, 2018, 35(05): 159-164.
[14] 张海滨, 侯爽, 欧进萍. 压电智能骨料对动载作用下混凝土损伤的监测 [J]. 工业建筑, 2016, 46(08): 85-88+97.
Zhang Haibin, Hou Shuang, Ou Jinping. Monitoring of concrete damage under dynamic loading using piezoelectric smart aggregates [J]. Industrial Architecture, 2016, 46(08): 85-88+97.
[15] ZHANG H, LI J, KANG F. Real-time monitoring of humidity inside concrete structures utilizing embedded smart aggregates [J]. Construction and Building Materials, 2022, 331: 127317.
[16] ZHOU L, ZHENG Y, HUO L, et al. Monitoring of bending stiffness of BFRP reinforced concrete beams using piezoceramic transducer enabled active sensing [J]. Smart Materials and Structures, 2020, 29(10): 105012.
[17] 杜国锋, 吴方红, 何明星, 等. 基于压电陶瓷的高强度智能骨料研制 [J]. 广西大学学报(自然科学版), 2016, 41(02): 301-307.
Du Guofeng, Wu Fanghong, He Mingxing, et al. Development of high-strength smart aggregates based on piezoelectric ceramics [J]. Journal of Guangxi University (Natural Science Edition), 2016, 41(02): 301-307.
[18] 齐宝欣, 张雨, 贾连光. 保护层材料对智能骨料性能影响的试验研究 [J]. 压电与声光, 2018, 40(04): 568-573+577.
Qi Baoxin, Zhang Yu, Jia Lianguang. Experimental study on the effect of protective layer materials on the performance of smart aggregates [J]. Piezoelectrics & Acoustooptics, 2018, 40(04): 568-573+577.
[19] KONG Q Z, FAN S L, BAI X L, et al. A novel embeddable spherical smart aggregate for structural health monitoring: part I. Fabrication and electrical characterization [J]. Smart Materials and Structures, 2017, 26(9): 095050.
[20] YANG Z, GAO W, LI M, et al. Monitoring and modeling the hydration of steel fibre-reinforced cement-based material in very early age [J]. Composite Structures, 2023, 311: 116780.
[21] FAN S L, ZHAO S Y, KONG Q Z, et al. An embeddable spherical smart aggregate for monitoring concrete hydration in very early age based on electromechanical impedance method [J]. Journal of Intelligent Material Systems and Structures, 2021, 32(5): 537-548.
[22] ZHAO S Y, FAN S L, YANG J, et al. A spherical smart aggregate sensor based electro-mechanical impedance method for quantitative damage evaluation of concrete [J]. Structural Health Monitoring-an International Journal, 2020, 19(5): 1560-1576.
[23] LAN C M, ZHUANG S, HAN S, et al. Monitoring of soil water content using spherical smart aggregates based on electromechanical impedance (EMI) technique [J]. Smart Materials and Structures, 2023, 32(7): 074002.
[24] LAN C M, LIU H H, ZHUANG S, et al. Monitoring of crack repair in concrete using spherical smart aggregates based on electromechanical impedance (EMI) technique [J]. Smart Materials and Structures, 2024, 33(2): 025031.
[25] GAO W H, LI H N, HO S C M. A Novel Embeddable Tubular Piezoceramics-Based Smart Aggregate for Damage Detection in Two-Dimensional Concrete Structures [J]. Sensors, 2019, 19(7): 1501.
[26] XU H B, WEN L J, WANG J J, et al. Modeling and electromechanical performance of improved smart aggregates using piezoelectric stacks [J]. Journal of Physics D-Applied Physics, 2023, 56(5): 054002.
[27] 兰成明, 刘鸿辉, 王建军, 等. 基于压电导纳的叠堆型压电智能骨料工作性能试验研究 [J]. 振动与冲击, 2024, 43(11): 9-18.
Lan Chengming, Liu Honghui, Wang Jianjun, et al. Experimental study on the working performance of stacked piezoelectric smart aggregates based on piezoelectric conductance [J]. Journal of Vibration and Shock, 2024, 43(11): 9-18.
[28] 张浩, 李俊杰, 康飞. 基于压电智能骨料的混凝土梁裂缝损伤监测研究 [J]. 振动与冲击, 2021, 40(21): 215-222.
Zhang Hao, Li Junjie, Kang Fei. Research on concrete beam crack damage monitoring based on piezoelectric smart aggregates [J]. Journal of Vibration and Shock, 2021, 40(21): 215-222.
[29] AI D M, ZHANG D L, ZHU H P. Damage localization on reinforced concrete slab structure using electromechanical impedance technique and probability-weighted imaging algorithm [J]. Construction and Building Materials, 2024, 424: 135824.
[30] 王建军, 梁林峰, 向宏军. 一种预制有2-2型水泥基压电俘能器的压电智能混凝土轨枕, CN211227886U [P/OL].
Wang Jianjun, Liang Linfeng, Xiang Hongjun. A piezoelectric smart concrete sleeper with prefabricated 2-2 type cement-based piezoelectric energy harvesters, CN211227886U [P/OL].
[31] SHAN G S, ZHU M L. A piezo stack energy harvester with frequency up-conversion for rail track vibration [J]. Mechanical Systems and Signal Processing, 2022, 178: 109268.
[32] 谢伟平, 陈谣, 王先锋. 基于MFC的地铁轨道振动能量收集研究 [J]. 振动与冲击, 2022, 41(09): 210-218+236.
Xie Weiping, Chen Yao, Wang Xianfeng. Research on vibration energy harvesting for subway tracks based on MFC [J]. Journal of Vibration and Shock, 2022, 41(09): 210-218+236.
[33] YUAN T C, YANG J, SONG R G, et al. Vibration energy harvesting system for railroad safety based on running vehicles [J]. Smart Materials and Structures, 2014, 23(12): 125046.
[34] MIN Z W, HOU C W, SUI G D, et al. Simulation and Experimental Study of a Piezoelectric Stack Energy Harvester for Railway Track Vibrations [J]. Micromachines, 2023, 14(4): 892.
[35] CAO Y L, ZONG R, WANG J J, et al. Design and performance evaluation of piezoelectric tube stack energy harvesters in railway systems [J]. Journal of Intelligent Material Systems and Structures, 2022, 33(18): 2305-2320.
[36] 杜承运, 王建军, 金浩, 等. 轨下压电叠堆俘能器安装对车轨系统动力性能的影响 [J]. 振动与冲击, 2024, 43(12): 248-259.
Du Chengyun, Wang Jianjun, Jin Hao, et al. Effect of installing piezoelectric stacked energy harvesters under rails on the dynamic performance of rail systems [J]. Journal of Vibration and Shock, 2024, 43(12): 248-259.
[37] YANG F, GAO M Y, WANG P, et al. Efficient piezoelectric harvester for random broadband vibration of rail [J]. Energy, 2021, 218: 119559.
[38] LIU T J, QIN S S, ZOU D J, et al. Experimental investigation on the durability performances of concrete using cathode ray tube glass as fine aggregate under chloride ion penetration or sulfate attack [J]. Construction and Building Materials, 2018, 163: 634-642.
[39] ZOU D J, LIU T J, HUANG Y C, et al. Exploratory Study on Sulfate Attack Monitoring of Concrete Structures Using Piezoceramic Based Smart Aggregates; proceedings of the 4th International Conference on Smart Materials and Nanotechnology in Engineering (SMN), Gold Coast, AUSTRALIA, F Jul 10-12, 2013 [C]. Spie-Int Soc Optical Engineering: BELLINGHAM, 2013.
[40] SUN C H, SHANG G Q, ZHU X C, et al. Modeling for Piezoelectric Stacks in Series and Parallel; proceedings of the 3rd International Conference on Intelligent System Design and Engineering Applications (ISDEA), Hong Kong, PEOPLES R CHINA, F Jan 16-18, 2013 [C]. Ieee: NEW YORK, 2013.
[41] LU G T, WANG Q, SONG H J, et al. Actuating Performance Analysis of a New Smart Aggregate Using Piezoceramic Stack [J]. Applied Sciences-Basel, 2021, 11(20): 9599.
[42] ZHAO S, ERTURK A. Deterministic and band-limited stochastic energy harvesting from uniaxial excitation of a multilayer piezoelectric stack [J]. Sensors and Actuators a-Physical, 2014, 214: 58-65.
[43] 朱占元, 凌贤长, 陈士军, 等. 青藏铁路列车行驶引起的轨枕竖向作用力研究 [J]. 哈尔滨工业大学学报, 2011, 43(06): 6-10.
Zhu Zhanyuan, Ling Xianchang, Chen Shijun, et al. Study on the vertical force of sleepers induced by train operation on the Qinghai-Tibet Railway [J]. Journal of Harbin Institute of Technology, 2011, 43(6): 6-10.
[44] 黄达, 魏亚, 郭为强, 等. 考虑介损的压电陶瓷开路输出电压研究 [J]. 压电与声光, 2020, 42(01): 62-66+70.
Huang Da, Wei Ya, Guo Weiqiang, et al. Study on open-circuit output voltage of piezoelectric ceramics considering dielectric loss [J]. Piezoelectrics & Acoustooptics, 2020, 42(01): 62-66+70. 
[45] LI P, WEN Y M, YIN W J, et al. An Upconversion Management Circuit for Low-Frequency Vibrating Energy Harvesting [J]. Ieee Transactions on Industrial Electronics, 2014, 61(7): 3349-3358.
[46] SHENG W, XIANG H, ZHANG Z, et al. High-efficiency piezoelectric energy harvester for vehicle-induced bridge vibrations: Theory and experiment [J]. Composite Structures, 2022, 299: 116040.
[47] SHAN G, KUANG Y, ZHU M. Design, modelling and testing of a compact piezoelectric transducer for railway track vibration energy harvesting [J]. Sensors and Actuators A: Physical, 2022, 347: 113980.
[48] WANG J, CAO Y, XIANG H, et al. A piezoelectric smart backing ring for high-performance power generation subject to train induced steel-spring fulcrum forces [J]. Energy Conversion and Management, 2022, 257: 115442.
[49] HOU W, ZHENG Y, GUO W, et al. Piezoelectric vibration energy harvesting for rail transit bridge with steel-spring floating slab track system [J]. Journal of Cleaner Production, 2021, 291: 125283.
[50] 张明亮, 亢景付, 杨荣伟. 干湿循环下硫酸盐对水泥基孔隙材料的侵蚀破坏综述 [J]. 硅酸盐通报, 2019, 38(10): 3150-3161.
Zhang Mingliang, Kang Jingfu, Yang Rongwei. A review on the erosion and damage of cement-based pore materials by sulfates under dry-wet cycles [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3150-3161.
[51] 孙道胜, 程星星, 刘开伟, 等. 硫酸盐侵蚀下石膏的形成及破坏机制研究现状 [J]. 材料导报, 2018, 32(23): 4135-4141.
Sun Daosheng, Cheng Xingxing, Liu Kaiwei, et al. Current status of research on the formation and destruction mechanism of gypsum under sulfate erosion [J]. Materials Review, 2018, 32(23): 4135-4141.
[52] 仵江涛, 何锐, 王笑风, 等. 硫酸盐侵蚀混凝土内外影响因素及影响机理研究进展 [J]. 硅酸盐通报, 2019, 38(01): 110-117.
Wu Jiangtao, He Rui, Wang Xiaofeng, et al. Progress in research on the internal and external influencing factors and mechanisms of sulfate erosion on concrete [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(01): 110-117.
[53] 吴萌, 张云升, 刘志勇, 等. 水泥基材料碳硫硅钙石型硫酸盐侵蚀的研究进展 [J]. 硅酸盐学报, 2022, 50(08): 2270-2283.
Wu Meng, Zhang Yunsheng, Liu Zhiyong, et al. Progress in research on sulfate erosion of cement-based materials in the form of carbon-sulfur-silicon-calcium sulfate [J]. Journal of the Chinese Ceramic Society, 2022, 50(08): 2270-2283.
[54] 周莹, 穆松, 石亮. 半浸泡硫酸盐环境中混凝土损伤表征及寿命预测 [J]. 混凝土, 2020, (05): 14-18.
Zhou Ying, Mu Song, Shi Liang. Damage characterization and lifetime prediction of concrete in semi-immersion sulfate environments [J]. Concrete, 2020, (05): 14-18.
[55] LIU C, GAO J, CHEN F, et al. Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack [J]. Construction and Building Materials, 2019, 216: 93-100.
[56] VISALAKSHI T, BHALLA S, GUPTA A. Monitoring early hydration of reinforced concrete structures using structural parameters identified by piezo sensors via electromechanical impedance technique [J]. Mechanical Systems and Signal Processing, 2018, 99: 129-141.
[57] 张冰. 含水率及养护条件对富含砖粒再生混凝土性能影响研究 [D], 2019.
[58] NEGI P, CHHABRA R, KAUR N, et al. Health monitoring of reinforced concrete structures under impact using ex) multiple piezo-based configurations [J]. Construction and Building Materials, 2019, 222: 371-389.
[59] CHENG H B, LIU T J, ZOU D J, et al. Compressive strength assessment of sulfate-attacked concrete by using sulfate ions distributions [J]. Construction and Building Materials, 2021, 293: 123550.
[60] LIU P, CHEN Y, YU Z W, et al. Effect of sulfate solution concentration on the deterioration mechanism and physical properties of concrete [J]. Construction and Building Materials, 2019, 227: 116641.
[61] SARAVANAN T J, BALAMONICA K, PRIYA C B, et al. Comparative performance of various smart aggregates during strength gain and damage states of concrete [J]. Smart Materials and Structures, 2015, 24(8): 085016.
[62] LI Y, MA Y L, HU X B. Early-age strength monitoring of the recycled aggregate concrete using the EMI method [J]. Smart Materials and Structures, 2021, 30(5): 055017.
[63] 姜磊. 硫酸盐侵蚀环境下混凝土劣化规律研究 [D], 2014.
[64] XIE F, LI J P, ZHAO G W, et al. Experimental study on performance of cast-in-situ recycled aggregate concrete under different sulfate attack exposures [J]. Construction and Building Materials, 2020, 253: 119144.
[65] LIAO K X, ZHANG Y P, ZHANG W P, et al. Modeling constitutive relationship of sulfate-attacked concrete [J]. Construction and Building Materials, 2020, 260: 119902.
[66] WEI Y M, CHAI J R, QIN Y, et al. Effect of fly ash on mechanical properties and microstructure of cellulose fiber-reinforced concrete under sulfate dry-wet cycle attack [J]. Construction and Building Materials, 2021, 302: 124207.
[67] YE F L, WANG J, LIU Z M, et al. Experimental study on road piezoelectric energy harvesters' power generation performance under erosive environments [J]. International Journal of Energy Research, 2022, 46(15): 24105-24119.
[68] TALAKOKULA V, BHALLA S, BALL R J, et al. Diagnosis of carbonation induced corrosion initiation and progression in reinforced concrete structures using piezo-impedance transducers [J]. Sensors and Actuators a-Physical, 2016, 242: 79-91.
[69]中国铁道科学研究院铁道建筑研究所. 有砟轨道轨枕 混凝土枕 :GB/T 37330—2019[S]. 北京:中国国家标准化管理委员会,2019.

PDF(3274 KB)

Accesses

Citation

Detail

段落导航
相关文章

/