大型环柱天线卫星姿轨一体化全推进系统设计

王诗杰1, 孙敏哲1, 高峰1, 季奕1, 2, 3, 孙光辉1, 2, 董富祥4

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 1-11.

PDF(3682 KB)
PDF(3682 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 1-11.
航空航天

大型环柱天线卫星姿轨一体化全推进系统设计

  • 王诗杰1,孙敏哲1,高峰1,季奕*1,2,3,孙光辉1,2,董富祥4
作者信息 +

Design of large ring-column antenna satellite attitude-orbit integrated full propulsion system

  • WANG Shijie1, SUN Minzhe1, GAO Feng1, JI Yi*1,2,3, SUN Guanghui1,2, DONG Fuxiang4
Author information +
文章历史 +

摘要

百米级大型环柱天线卫星作为地球静止轨道上的关键空间结构,其任务是在该轨道上提供高速信息传输和稳定的通信服务。这要求卫星具备精确的轨道保持和姿态控制能力。鉴于此类卫星通常具备更大的质量和特殊的结构设计,该研究利用高精度轨道预报算法,通过精细建模分析了太阳光压、非球形摄动和三体引力等关键空间环境因素对此类航天器空间运行的影响规律。进一步地,参考编队飞行重力场测量卫星的设计理念,该研究针对此类航天器提出了基于推力器布局优化的分布式全推力控制策略。在此基础上,还提出了一种基于Laguerre函数的改进显式模型预测控制算法,将设备能力限制和性能需求转化为输入、输出约束,结合多参数规划实现了对此类大型环柱天线卫星的姿轨一体化控制。仿真结果表明:在稳定运行期间,该百米级大型环柱天线卫星的位置保持误差可控制在米级范围内,姿态角误差优于0.03°,该研究提出的控制算法的计算效率显著高于标准模型预测控制算法和基于Laguerre函数的模型预测控制算法,且占用的硬件内存远低于显式模型预测控制算法。通过理论分析和数值验证,该研究为算力有限的星载计算机实现大型环柱天线卫星在复杂空间环境中的全推力器集成控制提供了一种有效解决方案。

Abstract

As a key space structure in geostationary orbit, 100-meter level large ring-column antenna satellite is tasked with providing high-speed information transmission and stable communication service in this orbit.This requires satellites having precise orbit maintenance and attitude control capabilities.Due to such satellites typically having larger masses and special structural designs, here, the high-precision orbit prediction algorithm was used to finely model and analyze effects of key space environmental factors of solar pressure, non-spherical perturbations and 3-body gravity on space operation of such spacecrafts.Furthermore, referring to the design concept of formation-flying gravity field measurement satellites, a distributed full thrust control strategy based on thruster layout optimization for such spacecrafts was proposed.Then, an improved explicit model predictive control algorithm was proposed based on Laguerre function to convert device capability limitations and performance requirements into input-output constraints, combine multi-parameter programming, and realize attitude-orbit integrated control of such satellites.The simulation results showed that during stable operation, position maintenance errors of such satellites can be controlled within a meter-level range, and attitude angle errors are better than 0.03°; the computational efficiency of the proposed control algorithm is significantly higher than that of the standard model predictive control algorithm and Laguerre function-based model predictive control algorithm; the hardware memory occupied is much lower than that of the explicit model predictive control algorithm.Through theoretical analysis and numerical verification, it was shown that this study can provide an effective solving scheme for full thruster integrated control of large ring-column antenna satellites in complex space environment using onboard computers with limited computing power.

关键词

大型环柱天线卫星 / 空间环境 / 姿轨一体化 / 模型预测控制 / 全推力设计 / Laguerre函数

Key words

large ring-column antenna satellite / space environment / attitude-orbit integration / model predictive control / full thrust design / Laguerre function

引用本文

导出引用
王诗杰1, 孙敏哲1, 高峰1, 季奕1, 2, 3, 孙光辉1, 2, 董富祥4. 大型环柱天线卫星姿轨一体化全推进系统设计[J]. 振动与冲击, 2025, 44(11): 1-11
WANG Shijie1, SUN Minzhe1, GAO Feng1, JI Yi1, 2, 3, SUN Guanghui1, 2, DONG Fuxiang4. Design of large ring-column antenna satellite attitude-orbit integrated full propulsion system[J]. Journal of Vibration and Shock, 2025, 44(11): 1-11

参考文献

[1]  武子谦, 宋淑丽, 周伟莉, 等. 导航卫星太阳辐射压模型研究进展[J]. 地球科学进展, 2015, 30(4): 495-504.
WU Ziqian, SONG Shuli, ZHOU Weili, et al. Research progress of solar radiation pressure model for navigation satellite[J]. Advances in Earth Science, 2015, 30(4): 495-504.
[2]  张叶青. 高精度卫星轨道预报算法设计与软件开发[D]. 哈尔滨: 哈尔滨工业大学, 2021.
ZHANG Yeqing. Algorithm design and software development for high-precision satellite orbit predicition[D]. Harbin: Harbin Institute of Technology, 2021.
[3]  侯新宇, 张帆, 黄攀峰, 等. 空间大型桁架天线姿态与振动一体化控制[J]. 航空学报, 2023, 44(S1): 727552.
HOU Xinyu, ZHANG Fan, HUANG Panfeng, et al. Integrated attitude and vibration control of space large antenna with truss[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727552.
[4]  管萍, 吴希岩, 戈新生. 基于Tube的挠性航天器模型预测姿态控制及主动振动控制[J]. 振动与冲击, 2022, 41(16): 261-270.
GUAN Ping, WU Xiyan, GE Xinsheng. Tube-based model predictive attitude control and active vibration control for flexible spacecraft[J]. Journal of Vibration and Shock, 2022, 41(16): 261-270.
[5] ROCK B S, BLANDINO J J, DEMEREIOU M A. Application of Micronewton Thrusters for Control of Multispacecraft Formations in Earth Orbit[C]. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, Florida, USA, July 11-14, 2004.
[6] CANUTO E, MASSOTTI L. All-propulsion design of the drag-free and attitude control of the European satellite GOCE[J]. Acta Astronautica, 64, 2009: 325-344.
[7] MARCHETTI P, BLANDINO J J, DEMETRIOU M A. Electric Propulsion and Controller Design for Drag-Free Spacecraft Operation in Low Earth Orbit[C]. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006, California, USA, July 09-12, 2006.
[8] 吉莉, 刘昆, 项军华. 内重力场测量卫星约束非线性模型预测控制[C]. 第三十届中国控制会议, 烟台, 2011年7月22-24日.
JI Li, LIU Kun, XIANG Junhua. Constrained Nonlinear Model Predictive Control of Inner-Formation Gravity Field Measurement Satellite[C]. Proceedings of the 30th Chinese Control Conference, Yantai, July 22-24, 2011.
[9]  曹建峰, 张宇, 陈略, 等. 利用多普勒测量确定嫦娥四号着陆器精密定轨[J]. 宇航学报, 2020, 41(7): 920-925.
CAO Jianfeng, ZHANG Yu, CHEN Lue, et al. Orbit Determination of Chang’ E-4 Lander Using Doppler Measurement[J]. Journal of Astronautics, 2020, 41(7): 920-925.
[10] 胡海岩, 田强, 张伟, 等. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展, 2013, 43(4): 390-414.
HU Haiyan, TIAN Wei, ZHANG Wei, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes[J]. Advances in Mechanics, 2013, 43(4): 390-414.
[11] 姜斌, 孟庆开, 杨浩. 航天器姿轨控制研究综述:微分几何控制方法[J]. 控制与决策, 2023, 38(8): 2079-2092.
JIANG Bin, MENG Qingkkai, YANG Hao. A survey on spacecraft attitude and orbit control: Differential geometric control approaches[J]. Contron and Decision, 2023, 38(8): 2079-2092.
[12] 邓子辰, 张凯, 李庆军, 等. 超大型航天结构动力学与控制的保辛方法[J]. 计算力学学报, 2024, 41(1): 108-117.
DENG Zichen, ZHANG Kai, LI Qingjun, et al. Reviews on symplectic method for dynamics and control of ultra large space structures[J]. Chinese Journal of computational Mechanics, 2024, 41(1): 108-117.
[13] Badawy A, McInnes C. On-orbit assembly using superquadric potential fields[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(1): 30-43.
[14] 张恒浩, 刘岱, 唐庆博, 等. 航天器降维姿态-轨道一体化控制算法[J]. 导弹与航天运载技术, 2019(5): 91-96.
ZHANG Henghao, LIU Dai, TANG Qingbo, et al. Dimension Reduction Attitude and Orbit   Integrated Control Algorithm of Spacecraft[J]. Missiles and Space Vehicles, 2019(5): 91-96.
[15] 吴锦杰, 刘昆, 韩大鹏, 等. 欠驱动航天器相对运动的姿轨耦合控制[J]. 控制与决策, 2014, 29(6): 969-978.
WU Jinjie, LIU Kun, HAN Dapeng, et al. Coupled attitude and orbit control for relative motion of underactuated spacecraft[J]. Control and Decision, 2014, 29(6): 969-978.
[16] 杨一岱, 荆武兴, 张召. 一种挠性航天器的对偶四元数姿轨耦合控制方法[J]. 宇航学报,2016, 37(8): 946-956.
YANG Yidai, JING Wuxing, ZHANG Zhao. A new method for orbit and attitude coupling control problem of flexible spacecraft based on dual quaternions[J]. Journal of Astronautics, 2016, 37 (8): 946-956.
[17] PRIETO D, AHMAD Z. A Drag free control based on Model Predictive Technics[C]. 2005 American Control Conference, Porland, OR USA, June 08-10, 2005.
[18] SHEARER C M, HEISE S A. Constrained Model Predictive Control of a Nonlinear Aerospace System[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Boston, MA, USA, August 10-12,1998.
[19] WOOD M and CHEN W H, Regulation of Magnetically Actuated Satellites using Model Predictive Control with Disturbance Modelling[C] 2008 IEEE International Conference on Networking, Sensing and Control, Sanya, China, April 06-08 2008.
[20] 孙楚琦, 肖岩, 叶东, 孙兆伟. 一种卫星姿轨一体化模型预测容错控制方法[J]. 宇航学报, 2023, 44(6): 885-894.
SUN Chuqi, XIAO Yan, YE Dong, SUN Zhaowei. Fault-tolerant Model Predictive Control of Satellite Pose Integration via Moving Horizon Estimation[J]. Journal of Astronautics, 2023, 44(6): 885-894.
[21] Wang W, Yan J, Wang H, et al. Adaptive MPC trajectory tracking for AUV based on Laguerre function[J]. Ocean Engineering, 2022, 261: 111870.
[22] Bemporad A, Morari M, Dua V, et al. The explicit linear quadratic regulator for constrained systems[J]. Automatica, 2002, 38(1): 3-20.
[23] 李仲兴, 李忠远, 刘晨来. 基于显式模型预测控制的轮毂驱动电动车垂向振动研究[J]. 振动与冲击, 2022, 41(11): 259-265.
LI Zhongxing, LI Zhongyuan, LIU Chenlai. Vertical vibration of hub motor driven electric vehicle based on EMPC[J]. Journal of Vibration and Shock, 2022, 41(11): 259-265.
[24] XU Y J, TATASCH A, FITZ-COY N, Chattering Free Sliding Mode Control for a 6 DOF Formation Flying Mission[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, USA, August 15-18, 2005.
[25] 陈小前, 陈献琪, 曹璐, 等. 卫星总体与姿态控制一体化优化设计方法[J]. 宇航学报, 2023, 44(4): 465-475.
CHEN Xiaoqian, CHEN Xianqi, CAO Lu, et al. Integrated Optimization Design Method of Satellite Overall System and Attitude Control[J]. Journal of Astronautics, 2023, 44(4): 465-475.
[26]李源青, 杨浩, 倪媛, 姜斌. 对地观测卫星编队协同容错姿轨耦合控制[J]. 宇航学报, 2024, 45(1): 110-122.
LI Yuanqing, YANG Hao, NI Yuan, JIANG Bin. Fault-tolerant Cooperative Control for Earth Observation Satellite Formation with Attitude-orbit Coupling[J]. Journal of Astronautics, 2024, 45(1): 110-122.
[27] 刘将辉, 彭祺擘, 张海联, 周建平. 常值推力作用的轨道机动优化设计策略[J]. 宇航学报, 2024, 45(3): 389-398.
LIU Jianghui, PENG Qibo, ZHANG Hailian, ZHOU Jianping. An Optimal Design Strategy for Orbital Maneuver with Constant Thrust[J]. Journal of Astronautics, 2024, 45(3): 389-398.
[28] 蒯政中, 沈红新, 李恒年, 何清波. 地球静止卫星电推进轨道保持策略优化[J]. 中国空间科学技术, 2018, 38(3): 69-75.
KUAI Zhengzhong, SHEN Hongxin, LI Hengnian HE Qingbo. Optimal station keeping of geostationary satellites by electric propulsion[J]. Chinese Space Science and Technology, 2018, 38(3): 69-75.
[29] CANUTO E. Drag-free and attitude control for the GOCE satellite[J]. Automatica, 2008, 44(7): 1766-1780.
[30]Loris Franchi, et al. Model predictive and reallocation problem for  CubeSat fault recovery and attitude control[J]. Mechanical Systems and  Signal Processing, 2017 (98): 1034-1055.
[31]SOOP E M. 地球静止轨道手册[M]. 王正才, 邢国华, 张宏伟, 等译. 北京: 国防工业出版社, 1999.
[32] 何丽娜. 不同摄动力对低中高轨航天器轨道的影响分析[J]. 大地测量与地球动力学, 2017, 37(11): 1156-1165.
HE Lina. Perturbation Forces for Spacecraft of Different Orbit Altitudes[J]. Journal of Geodesy and Geodynamics, 2017, 37(11): 1156-1165.
[33] Aucoin R, Chee S A, Forbes J R. Linear-and linear-matrix-inequality-constrained state estimation for nonlinear systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3153-3167.
[34] Wang L, Zhu H, Xu W, et al. Thermal-structural analysis of a large space hoop-column antenna under unidirectional solar radiations[J]. Thin-Walled Structures, 2024, 198: 111695.

PDF(3682 KB)

Accesses

Citation

Detail

段落导航
相关文章

/