轮径差耦合下电机弹性架悬转向架横向稳定性影响研究

祁亚运1, 敖鹏1, 戴焕云2, 刘华1, 贺星1, 李良昫1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 111-118.

PDF(3123 KB)
PDF(3123 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 111-118.
振动理论与交叉研究

轮径差耦合下电机弹性架悬转向架横向稳定性影响研究

  • 祁亚运*1,敖鹏1,戴焕云2,刘华1,贺星1,李良昫1
作者信息 +

Effects of wheel diameter difference on lateral stability of motor elastic frame suspension bogie

  • QI Yayun*1, AO Peng1, DAI Huanyun2, LIU Hua1, HE Xing1, LI Liangxu1
Author information +
文章历史 +

摘要

车轮出现轮径差会加剧转向架蛇行失稳,电机弹性架悬结构能有效改善其稳定性。为了探明轮径差与电机弹性架悬转向架横向稳定性关系,建立轮轨非线性接触模型和电机弹性架悬转向架横向动力学模型,分析轮径差与电机悬挂参数对转向架横向稳定性影响,研究轮对在不同轮轨接触下Hopf分岔特性。研究结果表明:在同相轮径差下,转向架系统稳定性随电机横移频率增加呈现先增后减趋势,存在最佳频率约为3Hz。当电机振动频率和转向架蛇行频率一致,且幅值越低于后者,电机架悬减振效果越好,但轮径差的产生会降低这一效果;当车辆速度过高且轮径差值超过1.2mm时会导致轮轨发生轮缘接触,短期内提升转向架稳定性,但长期会加剧轮轨磨损。轮径差值越大,轮对平衡中心线越偏离轨道中心线,轮对系统越容易从亚临界Hopf分岔转变为超临界Hopf分岔。同相轮径差工况下轮径差临界值为0.5mm,前轮对轮径差临界值为1.5mm。

Abstract

Wheel diameter differences can intensify the hunting instability of the bogie, and a motor suspension structure with elasticity can effectively enhance its stability. To elucidate the relationship between wheel diameter differences and the lateral stability of a motor-suspended bogie, a nonlinear wheel-rail contact model and a lateral dynamic model of a motor-suspended bogie is established. These models are used to analyze the effect of wheel diameter differences and motor suspension parameters on the lateral stability of the bogie. Additionally, this paper investigates the Hopf bifurcation characteristics of wheelsets under different wheel-rail contact conditions. The research results showed that under the condition of in-phase wheel diameter difference, the stability of the bogie system first increases and then decreases with the increase of the motor's lateral frequency, with an optimal frequency of approximately 3Hz. When the frequency of the motor matches the hunting frequency of the bogie, and its amplitude is lower than that of the latter, the vibration reduction effect of the motor suspension is better. However, the generation of wheel diameter difference will reduce this effect. When the vehicle speed is too high and the wheel diameter difference exceeds 1.2mm, it will lead to flange contact between the wheel and rail. This can enhance the stability of the bogie in the short term, but it will intensify wheel and rail wear in the long term. The larger the wheel diameter difference, the more the balance centerline of the wheelset deviates from the centerline of the track, making the wheelset system more likely to transition from a subcritical Hopf bifurcation to a supercritical Hopf bifurcation. In-phase operating conditions, the critical value for the wheel diameter difference is 0.5mm, and the critical value for the front wheelset diameter difference is 1.5mm.

关键词

高速动车组 / 转向架稳定性 / 轮径差 / 电机弹性架悬 / Hopf分岔

Key words

high speed EMUs;bogie stability;wheel diameter difference / motor elastic suspension / Hopf bifurcation

引用本文

导出引用
祁亚运1, 敖鹏1, 戴焕云2, 刘华1, 贺星1, 李良昫1. 轮径差耦合下电机弹性架悬转向架横向稳定性影响研究[J]. 振动与冲击, 2025, 44(11): 111-118
QI Yayun1, AO Peng1, DAI Huanyun2, LIU Hua1, HE Xing1, LI Liangxu1. Effects of wheel diameter difference on lateral stability of motor elastic frame suspension bogie[J]. Journal of Vibration and Shock, 2025, 44(11): 111-118

参考文献

[1] 黄照伟, 崔大宾, 杜星, 等. 车轮偏磨对高速列车直线运行性能的影响[J]. 铁道学报, 2013, 35(02): 14-20.
HUANG Zhaowei, CHUI Dabin, DU Xing, et al. Influence of deviated wear of wheel on performance of high-speed train running on straight tracks[J]. Journal of the China Railway Society, 2013, 35(02): 14-20.
[2] SAWLEY K, Urban C, Walker R. The effect of hollow-worn wheels on vehicle stability in straight track[J]. Wear, 2005, 258(7-8): 1100-1108.
[3] Sui S, Wang K, Ling L, et al. Effect of wheel diameter difference on tread wear of freight wagons[J]. Engineering Failure Analysis, 2021, 127: 105501.
[4] 池茂儒, 张卫华, 曾京, 等. 轮径差对车辆系统稳定性的影响[J].中国铁道科学, 2008, 29(6): 65-70.
CHI Maoru, ZHANG Weihua, ZENG Jin, et al. Influence of wheel diameter difference on the stability of vehicle system[J]. China Railway Science, 2008, 29(6): 65-70.
[5] 韩鹏, 张卫华, 李艳, 等. 轮对磨耗与轮径差对高速列车动力学性能的影响[J]. 交通运输工程学报, 2013, 13(6): 47-53.
HAN Peng, ZHANG Weihua, LI Yan, et al. Influence of wheelset wear and wheel radius difference on dynamics performance of high-speed train[J]. Journal of  Traffic and Transportation Engineering, 2013, 13(6): 47-53.
[6] 董昊亮, 文永蓬, 王向阳, 等. 多种接触状态下地铁车辆蛇行运动的稳定性演化[J]. 振动与冲击, 2022, 41(18): 94-103.
DONG Haoliang, WEN Yongpeng, WANG Xiangyang, et al. Evolution of metro vehicle serpentine motion stability under multiple contact conditions[J]. Journal of Vibration and Shock, 2022, 41(18): 94-103.
[7] 祁亚运, 戴焕云, 干锋, 等. 高速动车组车轮偏磨影响因素与限值研究[J]. 表面技术, 2023, 52(05): 51-60.
QI Yayun, DAI Huanyun, GAN Feng, et al. Study on Influence Factors and Limit Values of Wheel Off-wear of High-Speed EMU [J]. Surface Technology, 2023, 52(05): 51-60.
[8] 祁亚运, 戴焕云, 桑虎堂, 等. 高速动车组抗蛇行减振器参数优化研究[J]. 振动工程学报, 2023, 36(05): 1326-1334.
QI Yayun, DAI Huanyun, SANG Hutang, et al. Optimization study of anti-yaw damper parameters for high-speed EMUs[J]. Journal of Vibration Engineering, 2023, 36(05): 1326-1334.
[9] Alfi S, Mazzola L, Bruni S. Effect of motor connection on the critical speed of high-speed railway vehicles[J]. Vehicle System Dynamics, 2008, 46(S1): 201-214.
[10] Huang C, Zeng J, Liang S. Influence of system parameters on the stability limit of the undisturbed motion of a motor bogie[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(5): 522-534.
[11] Yao Y, Zhang H J, Luo S H. The mechanism of drive system flexible suspension and its application in locomotives[J]. Transport, 2015, 30(1): 69-79.
[12] 黄彩虹, 宋春元, 范军, 等. 电机弹性架悬高速转向架蛇行频率跳变现象分析[J]. 铁道学报, 2021, 43(10): 20-28.
HUANG Caihong, SONG Chunyuan, FAN Jun, et al. Analysis on hunting frequency jump phenomenon of high-speed bogies with elastic motor suspension[J]. Journal of the China Railway Society, 2021,43(10): 20-28.
[13] 徐坤. 电机架悬式高速动车驱动系统动力学研究[D]. 西南交通大学,  2019.
XU Kun. Research on driving system dynamics for high speed motor car with bogie frame-suspended motors[D]. Southwest University, 2019.
[14] Guo J, Shi H, Luo R, et al. Bifurcation analysis of a railway wheelset with nonlinear wheel–rail contact[J]. Nonlinear Dynamics, 2021, 104(2): 989-1005.
[15] 罗仁,石怀龙. 铁道车辆系统动力学及其应用[M]. 成都:西南交通大学出版社, 2018.
LUO Ren, SHI Huailong. Railway vehicle system dynamics and its application[M]. Chengdu: Southwest University Press, 2018.  
[16] Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1-3): 79-83.
[17] Liu B, Bruni S. Influence of individual wheel profiles on the assessment of running dynamics of a rail vehicle by numerical simulation: a case study[J]. Vehicle System Dynamics, 2022, 60(7): 2393-2412.
[18] 祁亚运, 戴焕云, 干锋. 高速列车车轮型面多目标优化研究[J]. 机械工程学报, 2022, 58(24): 188-197.
QI Yayun, DAI H Y, G F. Optimization of Wheel Profiles for High-speed Trains[J]. Journal of Mechanical Engineering, 2022, 58(24): 188-197.
[19] 张卫华, 罗仁, 宋春元, 等. 基于电机动力吸振的高速列车蛇行运动控制[J]. 交通运输工程学报, 2020, 20(5): 125-134.
ZHANG Weihua, LUO Ren, SONG Chunyuan, et al. Hunting control of high-speed train using traction motor as dynamic absorber[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 125-134.
[20] 丁文镜. 减振理论[M]. 北京:清华大学出版社, 2014.
DING Wenjing. Vibration damping theory[M]. Beijing: Tsinghua University Press, 2014.
[21] 石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58.
SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of  Traffice and Transportation Engineering, 2021, 21(1): 36-58.
[22] 祁亚运, 戴焕云, 高浩, 等. 考虑驱动系统的高速列车动力学分析[J]. 振动工程学报, 2019, 32(01): 176-183.
QI Yayun DAI Huanyun,  GAO Hao, et al. Dynamic analysis of high speed train with considering drive system[J]. Journal of Vibration Engineering, 2019, 32(01): 176-183.

PDF(3123 KB)

Accesses

Citation

Detail

段落导航
相关文章

/