含惯容器的调谐垂荡板半潜式平台垂荡抑制研究

唐雪1, 2, 韩世昌1, 2, 石奕玮1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 129-138.

PDF(2697 KB)
PDF(2697 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 129-138.
振动理论与交叉研究

含惯容器的调谐垂荡板半潜式平台垂荡抑制研究

  • 唐雪1,2,韩世昌*1,2,石奕玮1,2
作者信息 +

Heave suppression of semi-submersible platform with tuned heave plate containing inerter

  • TANG Xue1,2, HAN Shichang*1,2, SHI Yiwei1,2
Author information +
文章历史 +

摘要

为了减轻浮式风力发电机半潜式平台在波浪力作用下的非定常垂荡响应,基于调谐质量阻尼器减震原理,研究加入惯容器后的调谐垂荡板结构对半潜式平台垂荡响应的影响。建立调谐垂荡板惯容系统-半潜式平台的动力学模型,并以半潜式平台的垂荡运动均方根值作为评价标准,确定了调谐垂荡板惯容系统的最优设计参数。对比分析了4种不同海况下,调谐垂荡板惯容系统半潜式平台与传统半潜式平台、固定垂荡板板半潜式平台和调谐垂荡板半潜式平台的垂荡响应。结果表明,在4种海况下,调谐垂荡板惯容系统抑制浮式风力机半潜式平台的垂荡运动效果最好,即基于惯容器的装置的引入有助于抑制半潜式平台的垂荡运动。

Abstract

To mitigate the unsteady heave response of the semi-submersible platform (SSP) for floating wind turbines under wave-induced forces, based on the principle of tuned mass damper, the influence of tuned heave plate (THP) structure after adding an inerter on the heave response of semi-submersible platform was studied. The dynamic model of the SSP with tuned heave plate inerter (THPI-SSP) is developed, and its optimal design parameters for the THPI system are determined using the root mean square value of the heave motion as the evaluation criterion. A comparative analysis is then performed, contrasting the heave response of the THPI-SSP with that of the SSP, SSP with fixed heave plate, and SSP with THP under four distinct sea conditions. The results show that under the four sea conditions, the THPI has the best effect on mitigating the heave motion of the floating wind turbine semi-submersible platform, that is, the introduction of the inerter-based device is helpful to mitigate the heave motion of the semi-submersible platform.

关键词

半潜式平台 / 调谐垂荡板 / 惯容器 / 垂荡运动抑制

Key words

semi-submersible platform / tuned heave plate / inerter / heave motion mitigation

引用本文

导出引用
唐雪1, 2, 韩世昌1, 2, 石奕玮1, 2. 含惯容器的调谐垂荡板半潜式平台垂荡抑制研究[J]. 振动与冲击, 2025, 44(11): 129-138
TANG Xue1, 2, HAN Shichang1, 2, SHI Yiwei1, 2. Heave suppression of semi-submersible platform with tuned heave plate containing inerter[J]. Journal of Vibration and Shock, 2025, 44(11): 129-138

参考文献

[1] 陈嘉豪,裴爱国,马兆荣,等.海上漂浮式风机关键技术研究进展[J]. 南方能源建设,2020,7(01):8-20.
CHEN Jia-hao, PEI Ai-guo, MA Zhao-rong, et al. A review of the key technologies for floating offshore wind turbines [J]. 
Southern Energy Construction, 2020, 7(01): 8-20.
[2] 贺尔铭,张  扬,胡亚琪. 3种典型海上浮动式风力机动力学特性比较分析[J]. 太阳能学报,2015,36(12):2874-2881.
HE Er-ming, ZHANG Yang, HU Ya-qi. Comparative analysis of the 
dynamic characteristics of three typical offshore floating wind turbines [J]. Acta Energiae Solaris Sinica, 2015, 36(12): 2874-2881.
[3]  DING Yun, Soester W L. Truss Semi-Submersible Offshore Floating Structure[P]. America, US11332707, 2007-07-19.
[4]  Kandasamy R, CUI Fang-sen, Townsend N, et al. A review of vibration control methods for marine offshore structures[J]. Ocean Engineering, 2016, 127: 279-297.
[5]  Thiagarajan K P, Datta I, Ran A Z. Influence of heave plate geometry on the heave response of classic spars[C]// Proceedings of the ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. Oslo: American Society of Mechanical Engineers, 2002. 1687-1693.
[6]  Chakrabarti S, Barnett J, Kanchi H, et al. Design analysis of a truss pontoon semi-submersible concept in deep water [J]. Ocean Engineering,2007,34: 621-629.
[7] 刘  鲲,朱  航,欧进萍. TMD在半潜式平台垂荡响应控制中的应用[J]. 工程力学,2011,28(S1):205-210.
LIU Kun, ZHU Hang, Ou Jin-ping. Application of TMD in heave response control of semi-submersible platform [J]. Engineering Mechanics, 2011, 28(S1): 205-210.
[8]  LIU Kun, Ou Jin-ping. A novel tuned heave plate system for heave motion suppression and energy harvesting on semi- submersible platforms[J]. Science China Technological Sciences, 2016, 59(06): 897-912.
[9]  Smith M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662
[10]  XU Kun, BI Kai-ming, GE Yao-jun, et al. Performance evaluation of inerter-based dampers for vortex-induced vibration control of long-span bridges: A comparative study[J]. Structural Control and Health Monitoring, 2020, 27(6): e2529.1-e2529.27.
[11]  SHEN We-nai, Niyitangamahoro A, FENG Zhou-quan, et al. Tuned inerter dampers for civil structures subjected to earthquake ground motions: optimum design and seismic performance[J]. Engineering Structures, 2019, 198(C): 109470-109470.
[12]  ZUO Hao-ran, BI Kai-ming, HAO Hong, et al. Influences of ground motion parameters and structural damping on the optimum design of inerter-based tuned mass dampers[J]. Engineering Structures, 2021, 227: 111422.
[13]  HU Yin-long, Chen M Z Q. Inerter-based passive structural control for load mitigation of wind turbines[C]// 2017 29th Chinese Control and Decision Conference (CCDC), Piscataway: IEEE, 2017. 3056-3061.
[14]  MA Rui-sheng, BI Kai-ming, HAO Hong. Mitigation of heave response of semi-submersible platform (SSP) using tuned heave plate inerter (THPI)[J]. Engineering Structures, 2018, 177: 357-373.
[15]  Robertson A, Jonkman J, Masciola M, et al. Definition of the Semisubmersible Floating System for Phase II of OC4[R]. NREL/TP-5000-60601, United States: National Renewable Energy Laboratory, 2014.
[16]  Faltinsen O M. Sea loads on ships and offshore structures[M]. Cambridge: Cambridge University Press, 1990.
[17]  Faltinsen O M. Sea loads on ships and offshore structures[M]. Cambridge: Cambridge University Press, 1990.
[18]  DNV-OS-E301. Position mooring[S]. Høvik: Det Norske Veritas, 2013.
[19]  HU Yin-long, CHEN Z M. Performance evaluation for inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences, 2015, 99: 297-307.
[20]  DNV-RP-H103. Modelling and analysis of marine operations [S]. Høvik: Det Norske Veritas, 2011.
[21]  Chakrabarti S K, Murali B. Hydrodynamics of offshore structures[M]. Southampton: Computational Mechanics, 2003.
[22] 竺艳蓉. 海洋工程波浪力学[M].天津: 天津大学出版社, 1991. 
ZHU Yan-rong. Wave Mechanics for Ocean Engineering [M]. Tianjin: Tianjin University Press, 1991.
[23]  Hoang N, Fujino Y, Warnitchai P. Optimal tuned mass damper for seismic applications and practical design formulas[J]. Engineering Structures, 2007, 30(3): 707-715.  

PDF(2697 KB)

Accesses

Citation

Detail

段落导航
相关文章

/