水轮发电机组在运行过程中,其振动过程相互影响,具有明显的历史记忆性。并且转轮处压力脉动频繁波动,也导致其具有明显的附加质量涨落现象。针对以上问题,在分析机组实测振动记忆效应的基础上,建立了考虑质量涨落的水轮发电机组轴系分数阶非线性动力学模型,并基于MWORKS平台对模型进行了仿真计算。研究了分数阶阶次、质量涨落对机组分数阶非线性动力学特性的影响。结果表明:水轮发电机组振动具有明显的历史记忆性和长相关特性;分数阶阶次对系统记忆性和运动状态影响较大,阶次越高系统记忆性越好,分数阶模型能够更准确更灵活地模拟机组不同工况的历史记忆特性;转轮质量涨落能在一定程度上减小机组振幅,提高系统稳定性,对系统建模和响应分析有较大影响。
Abstract
In the operation of hydro turbine generator units, the vibration processes are interrelated and exhibit significant historical memory characteristics. Additionally, the frequent fluctuations in pressure pulsation at the runner lead to notable phenomena of additional mass variation. To address these issues, a fractional-order nonlinear dynamic model of the rotor system for hydro turbine generator units was established, considering mass fluctuations, based on an analysis of the measured vibration memory effects of the units. Simulations of the model were conducted using the MWORKS platform. The influence of fractional-order degree and mass fluctuations on the fractional-order nonlinear dynamic characteristics of the units was investigated. The results indicate that the vibrations of hydro turbine generator units exhibit significant historical memory and long-range correlation characteristics. The fractional-order degree has a substantial impact on the system's memory and motion state; higher order leads to better memory performance, and the fractional-order model can more accurately and flexibly simulate the historical memory characteristics of the units under different operating conditions. Furthermore, fluctuations in runner mass can, to some extent, reduce the amplitude of the units and enhance system stability, which has a significant impact on system modeling and response analysis.
关键词
水轮发电机组振动 /
分数阶微积分 /
记忆性 /
质量涨落 /
非线性动力学
{{custom_keyword}} /
Key words
Vibration of Hydropower Generator Units;Fractional calculus /
memory /
mass fluctuation /
nonlinear dynamics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘烨. 水轮机组轴系的建模及有限元分析[D/OL]. 华中科技大.
Liu Ye. Modeling and Finite Element Analysis of Turbine Unit Shaft System [D/OL]. Huazhong University of Science and Technology.
[2] PADOAN A C, KAWKABANI B, SCHWERY A, et al. Dynamical behavior comparison between variable speed and synchronous machines with pss[J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25(3): 1555–1565.
[3] 王皓臻, 俞晓东, 林文雯, 等. 水泵水轮机S特性对相继甩尾水最小压力的影响[J]. 水力发电学报, 2024, 43(6): 113-122.
Wang Haozhen, Yu Xiaodong, Lin Wenwen, et al. The Influence of Pump-Turbine S-Characteristics on the Minimum Pressure of Successive Tailwater [J]. Journal of Hydropower Generation, 2024, 43(6): 113-122.
[4] 安学利. 水力发电机组轴系振动特性及其故障诊断策略[D/OL]. 华中科技大学.
An Xueli. Vibration Characteristics of Hydropower Generator Unit Shaft System and Its Fault Diagnosis Strategies [D/OL]. Huazhong University of Science and Technology.
[5] 聂赛, 杨雄, 卢俊琦, 等. 不同故障下水轮发电机组轴系的振动特性研究[J/OL]. 水电能源科学.
Nie Sai, Yang Xiong, Lu Junqi, et al. Study on the Vibration Characteristics of Hydroelectric Generator Unit Shaft System under Different Faults [J/OL]. Journal of Hydropower and Energy Science.
[6] SHI Y, SHEN J, GUO W, 等. The nonlinear dynamic characteristics analysis and vibration reduction control of the shafting system of a hydropower unit[J/OL]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2022, 146: 104166.
[7] 刘鑫. 水轮机转轮流固耦合裂纹萌生扩展与空化湿模态研究[D/OL]. 清华大学, 2018.
Liu Xin. "Research on the Generation and Propagation of Cracks and Cavitation Wet Modes in the Coupling of Turbine Runner and Structure." [D/OL]. Tsinghua University, 2018.
[8] 许贝贝. 水力发电系统分数阶动力学模型与稳定性[D/OL]. 西北农林科技大学, 2018.
Xu Beibei. "Fractional-Order Dynamic Model and Stability of Hydropower Generation Systems." [D/OL]. Northwest A&F University, 2018.
[9] FU H, LEI T. Adomian decomposition, dynamic analysis and circuit implementation of a 5d fractional-order hyperchaotic system[J]. SYMMETRY-BASEL, 2022, 14(3): 484.
[10] GOODWINE B. Fractional-order dynamics in large scale control systems[C/OL]//2023 31ST MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, MED. New York: IEEE, 2023: 747–752.
[11] RYDEL M, STANISLAWSKI R, BIALIC G. Linear-quadratic-gaussian control of fractional-order systems based on delta vs. nabla fractional-order difference[C/OL]//2023 27TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, MMAR. New York: IEEE, 2023: 428–433.
[12] SHI Q, GUO Z, WANG S, et al. Physics-based fractional-order model and parameters identification of liquid metal battery[J]. ELECTROCHIMICA ACTA, 2022, 428: 140916.
[13] WANG H, YU Y, WEN G, et al. Global stability analysis of fractional-order hopfield neural networks with time delay[J]. NEUROCOMPUTING, 2015, 154: 15–23.
[14] CAO J, XUE S, LIN J, et al. Nonlinear dynamic analysis of a cracked rotor-bearing system with fractional order damping[J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2013, 8(3): 031008.
[15] 李兆飞, 任小洪, 谭飞, 等. 滚动轴承振动信号的非线性分形特性研究[J]. 轴承, 2015(9): 53–58.
Li Zhaofei, Ren Xiaohong, Tan Fei, et al. Study on the Nonlinear Fractal Characteristics of Vibration Signals in Rolling Bearings. Bearings, 2015(9): 53–58.
[16] HE S, WANG H, SUN K. Solutions and memory effect of fractional-order chaotic system: a review[J]. CHINESE PHYSICS B, 2022, 31(6): 060501.
[17] 李兆军, 翟茹慧, 张光政, 等. 水流激励下水轮发电机组轴系的振动衰减特性[J]. 中国农村水利水电, 2023(12): 289–295.
Li Zhaojun, Zhai Ruhui, Zhang Guangzheng, et al. Vibration Attenuation Characteristics of Turbine Generator Shaft System under Water Flow Excitation [J]. China Rural Water and Hydropower, 2023(12): 289–295.
[18] 毛息军. 复杂水流激励下水轮发电机组动力学特性及其运行可靠性研究[D/OL]. 广西大学, 2021.
Mao Xijun. Research on the Dynamic Characteristics and Operational Reliability of Turbine Generator Units under Complex Water Flow Excitation [D/OL]. Guangxi University, 2021.
[19] 钟岳, 张纬华, 徐峰, 等. 谐波叠加法在道路谱重构中的改进与应用研究[J]. 汽车工程学报, 2023, 13(5): 739–749.
Zhong Yue, Zhang Weihua, Xu Feng, et al. "Improvement and Application of Harmonic Superposition Method in Road Spectrum Reconstruction." Journal of Automotive Engineering, 2023, 13(5): 739–749.
[20] 王丕光, 黄义铭, 赵密, 等. 椭圆形柱体地震动水压力的简化分析方法[J]. 震灾防御技术, 2019, 14(1): 24–34.
Wang Piguang, Huang Yiming, Zhao Mi, et al. Simplified Analysis Method for Seismic Water Pressure on Elliptical Cylinders. Journal of Disaster Prevention and Mitigation Technology, 2019, 14(1): 24–34.
[21] 张雷克. 水轮发电机组轴系非线性动力特性分析及振动机理研究[M/OL]. 1 版. 中国水利水电出版社, 2017.
Zhang Leike. Analysis of Nonlinear Dynamic Characteristics and Vibration Mechanism of Turbine Generator Shaft System [M/OL]. 1st ed. China Water & Power Press, 2017.
[22] YAN Y, PAL K, FORD N J. Higher order numerical methods for solving fractional differential equations[J]. BIT NUMERICAL MATHEMATICS, 2014, 54(2): 555–584.
[23] WANG Y. Stochastic volterra integral equations with a parameter[J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017: 333.
[24] 郭志强. 水电机组轴系—基础耦合非线性动力分析[D/OL]. 华北电力大学(北京).
Guo Zhiqiang. Coupled Nonlinear Dynamic Analysis of Hydroelectric Unit Shaft System and Foundation [D/OL]. North China Electric Power University (Beijing).
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}