超声能场激励下轧机辊系垂直振动特性研究

郭昊1, 徐慧东2, 王涛1, 3, 任忠凯1, 3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 188-195.

PDF(3165 KB)
PDF(3165 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 188-195.
振动理论与交叉研究

超声能场激励下轧机辊系垂直振动特性研究

  • 郭昊1,徐慧东2,王涛1,3,任忠凯*1,3
作者信息 +

Vertical vibration characteristics of rolling mill roller system under excitation of ultrasonic energy field

  • GUO Hao1, XU Huidong2, WANG Tao1,3, REN Zhongkai*1,3
Author information +
文章历史 +

摘要

为了研究超声能场激励下轧辊垂直方向的振动特性,建立了一种超声能场耦合作用下的轧机辊系垂直振动模型以及相应的非线性动力学方程。基于轧机实际参数,通过与有限元模型的时间响应曲线进行对比分析,验证了动力学方程的准确性。采用多尺度法求解了该系统的主共振、亚谐波共振及超谐波共振幅频特性方程,分析了轧机非线性刚度系数、阻尼系数、超声振子振动幅值等参数变化对轧机幅频特性的影响。研究成果为超声振动辅助轧制问题的研究提供了理论支撑。

Abstract

In order to study the vibration characteristics of the vertical direction of the roll under the excitation of the ultrasonic energy field, a vertical vibration model of the rolling mill roll system under the coupling of the ultrasonic energy field and the corresponding nonlinear dynamic equation are established. Based on the actual parameters of the rolling mill, the accuracy of the dynamic equation is verified by comparing with the time response curve of the finite element model. The multi-scale method is used to solve the amplitude-frequency characteristic equations of the main resonance, sub-harmonic resonance and super-harmonic resonance of the system. The influence of parameters such as nonlinear stiffness coefficient, damping coefficient and vibration amplitude of ultrasonic vibrator on the amplitude-frequency characteristics of rolling mill is analyzed. The research results provide theoretical support for the study of ultrasonic vibration assisted rolling.

关键词

超声能场 / 轧制 / 非线性垂振 / 幅频特性

Key words

ultrasonic energy field / rolling / nonlinear vertical vibration / amplitude-frequency characteristics

引用本文

导出引用
郭昊1, 徐慧东2, 王涛1, 3, 任忠凯1, 3. 超声能场激励下轧机辊系垂直振动特性研究[J]. 振动与冲击, 2025, 44(11): 188-195
GUO Hao1, XU Huidong2, WANG Tao1, 3, REN Zhongkai1, 3. Vertical vibration characteristics of rolling mill roller system under excitation of ultrasonic energy field[J]. Journal of Vibration and Shock, 2025, 44(11): 188-195

参考文献

[1] 任忠凯, 郭雄伟, 范婉婉, 等. 精密极薄带轧制理论研究进展及展望[J]. 机械工程学报, 2020, 56(12): 74-84.
        REN Zhongkai, GU0 Xiongwei, FAN Wanwan, et al. Research progress and prospects of precision ultra-thin strip rolling[J]. Journal of Mechanical Engineering, 2020, 56(12): 74-84.
[2] 杨利坡, 张海龙, 张永顺. 高端冷轧箔带形状/性能协同测控现状及趋势预测[J]. 金属学报, 2021, 57(3): 295-308.
        YANG Lipo, ZHANG Hailong, ZHANG Yongshun. Present analysis and trend prediction of shape/performance collaborative control for high-end cold rolling foils[J]. Acta Metall Sin., 2021, 57(3): 295-308.
[3] MAO Q, COUTRIS N, RACK H, et al. Investigating ultrasound induced acoustic softening in aluminum and its alloys[J]. Ultrasonics, 2019, 102(2): 106005.
[4] KANG J R, LIU X, XU M J. Plastic deformation of pure copper in ultrasonic assisted micro-tensile experiment[J]. Materials Science and Engineering, 2020, 785: 139364.
[5] MENG B, CAO B N, WAN M, et al. Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet[J]. International Journal of Mechanical Sciences, 2019, 157-158: 609-618.
[6] BAGHERIAN R, JADIDI A, BIDESKAN A, et al. Ultrasonic nanocrystalline surface modification of low strength aluminum alloy: Trade-off between surface integrity and production rate aiming at desired fatigue life[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(2): 1237-1251.
[7] GAO T, LIU X, YU K, et al. Effects of Ultrasonic Vibration on Tensile Properties of TC1 Titanium Alloy Sheet[J]. Rare Metal Materials and Engineering, 2019, 48(1): 286-292.
[8] SU H, SHEN X H, XU C H, et al. Surface characteristics and corrosion behavior of TC11 titanium alloy strengthened by ultrasonic roller burnishing at room and medium temperature[J]. Journal of Materials Research and Technology, 2020, 9(4): 8172-8185.
[9] 丛家慧, 徐永臻, 王磊, 等. 超声冲击对TC4钛合金激光焊接接头疲劳性能的影响[J]. 稀有金属, 2022, 46(11): 1414-1421. 
        CONG Jiahui, XU Yongzhen, WANG Lei, et al. Ultrasonic Impact Treatment on Fatigue Properties of Laser Welded Joints of TC4 Titanium Alloy[J]. Rare Metals, 2022, 46(11): 1414-1421.
[10] SHAO G D, LI H W, ZHAN M. A review on ultrasonic-assisted forming: Mechanism, model, and process[J]. Chinese Journal of Mechanical Engineering, 2021, 34(10): 99-122.
[11] 赵波, 姜燕, 别文博. 超声滚压技术在表面强化中的研究与应用进展[J]. 航空学报, 2020, 41(10): 26-34.
        ZHAO Bo, JIANG Yan, BIE Wenbo. Ultrasonic rolling technology in surface strengthening: Progress in research and applications[J]. Chinese Journal of Aeronautics, 2020, 41(10): 26-34.
[12] SHI P M, LI J Z, JIANG J S, et al. Nonlinear dynamics of torsional vibration for rolling mill’s main drive system under parametric excitation[J]. Journal of Iron and Steel Research, International, 2013, 20(1): 7-12. 
[13] 孙建亮, 刘宏民, 李琰赟, 等. 热连轧机水平振动及其与轧制参数影响关系[J]. 钢铁, 2015, 50(1): 43-49.
        SUN Jianliang, LIU Hongmin, LI Yanyun, et al. Horizontal vibration of hot rolling mill and its relationship with rolling parameters[J]. Iron and Steel, 2015, 50(1): 43-49.
[14] 侯东晓, 徐良, 时培明. 混合润滑状态下板带轧机垂直振动特性研究[J]. 振动与冲击, 2021, 40(24): 243-248.
        HOU Dongxiao, XU Liang, SHI Peiming. A study on vertical vibration characteristics of strip mill under mixed lubrication[J]. Journal of Vibration and Shock, 2021, 40(24): 243-248.
[15] 侯东晓, 郭大武, 陈小辉. 基于动态轧制力的四辊轧机垂直-扭转耦合非线性振动特性研究[J]. 振动与冲击, 2020, 39(20): 106-112.
        HOU Dongxiao, Guo Dawu, Chen Xiaohui. Study on vertical-torsional coupled nonlinear vibration characteristics of four-high rolling mill based on dynamic rolling force[J]. Journal of Vibration and Shock, 2020, 39(20): 106-112.
[16] 马志强. 冷带轧机振动特性分析及抑制研究[D]. 燕山大学, 2019.
        MA Zhiqiang, Vibration characteristics analysis and suppression research of cold strip rolling mill[D]. Yanshan University, 2019.
[17] 马志强, 魏立新, 孙浩, 等. 考虑辊缝摩擦及张力影响的冷轧机非线性振动特性研究[J]. 矿冶工程, 2019, 39(02): 102-107.
        MA Zhiqiang, WEI Lixin, SUN Hao, et al. Study on Nonlinear Vibration Characteristics of a Cold Rolling Mill Considering Friction and Tension within Roll Gap[J]. Mining and Metallurgical Engineering, 2019, 39(02): 102-107.
[18] 和东平. 基于动态轧制力的波纹辊轧机非线性垂振及稳定性控制研究[D]. 太原理工大学, 2021.
        He Dongping. Research on nonlinear vertical vibration and stability control of corrugated roll mill based on dynamic rolling force[D]. Taiyuan University of Technology, 2021.
[19] 和东平, 王涛, 解加全, 等. 波纹辊轧机辊系垂直非线性参激振动特性分析[J]. 振动与冲击, 2019, 38(20): 164-171.
        He Dongping, Wang Tao, Xie Jiaquan, et al. Analysis of vertical nonlinear parametrically excited vibration characteristics of corrugated roll mill roll system[J]. Journal of Vibration and Shock, 2019, 38(20): 164-171.
[20] 和东平, 徐慧东, 王涛, 等. 基于动态轧制力的波纹辊轧机非线性振动[J]. 钢铁, 2021,56(06): 75-81+111.
        He Dongping, Xu Huidong, Wang Tao, et al. Nonlinear vibration of corrugated roll mill based on dynamic rolling force[J]. Iron and Steel, 2021,56(06): 75-81+111.
[21] 刘彬, 赵红旭, 朱月, 等. 基于动态轧制力的冷轧机两自由度垂直振动特性[J]. 中国机械工程, 2014, 25(17): 2344-2350.
        Liu Bin, Zhao Hongxu, Zhu Yue, et al. Two-degree-of-freedom vertical vibration characteristics of cold rolling mill based on dynamic rolling force[J]. Chinese Journal of Mechanical Engineering, 2014, 25(17): 2344-2350.
[22] 王东, 王明. 颗粒阻尼吸振器对轧辊振动传递的影响及其能耗特性[J]. 太原理工大学学报, 2023, 54(05): 925-933.
        Wang Dong, Wang Ming. The influence of particle damping vibration absorber on roll vibration transmission and its energy consumption characteristics[J]. Journal of Taiyuan University of Technology, 2023, 54(05): 925-933.

PDF(3165 KB)

35

Accesses

0

Citation

Detail

段落导航
相关文章

/