薄膜-质量型声学超材料隔声性能及带隙研究

江立1, 2, 夏利娟1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 196-202.

PDF(2112 KB)
PDF(2112 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 196-202.
振动理论与交叉研究

薄膜-质量型声学超材料隔声性能及带隙研究

  • 江立1,2,夏利娟*1,2
作者信息 +

Sound insulation performance and bandgap of mass-attached membrane-type acoustic metamaterials

  • JIANG Li1,2, XIA Lijuan*1,2
Author information +
文章历史 +

摘要

薄膜-质量型声学超材料结构质量轻,低频段隔声性能优越,在船舶等领域的噪声控制上有着较好的应用前景。结合隔振原理和超材料简化模型从理论上解释了其在低频段优越隔声性能的产生机理,并在有限元模型中得到了验证。从基础构型出发,研究了质量块密度等结构参数对隔声性能的影响。提出了水平和垂向多胞元组合设计来提升隔声带隙宽度的新型超材料结构,通过数值仿真模型计算研究了组合设计下隔声带隙的叠加规律。结果表明,薄膜-质量型声学超材料的隔声性能受结构参数影响,超材料胞元的组合设计可以显著提升隔声带宽。本研究可以为声学超材料轻量化设计与隔声性能提升提供参考。

Abstract

The mass-attached membrane-type acoustic metamaterial is lightweight and exhibits excellent sound insulation performance in low frequency. For that reason, it has a good application prospect in noise control of ships and other fields. The generation mechanism of their excellent sound insulation performance in the low-frequency band is theoretically explained by the principles of vibration isolation and the simplified model of metamaterials. Also, this has been verified in a finite element model. Starting from the basic configuration, the influence of structural parameters such as the density of mass block on sound insulation performance is studied. A novel metamaterial structure with horizontal and vertical multi-cell combination design is proposed to enhance the width of the sound insulation bandgap. Numerical simulation models were used to study the superposition law of sound insulation bandgaps under this combined design. The results indicate that the sound insulation performance of that acoustic metamaterials is affected by structural parameters. The combined design of metamaterial cells can significantly improve the sound insulation bandwidth. This study provides a reference for lightweight design and sound insulation performance enhancement of acoustic metamaterials.

关键词

隔声性能 / 隔声带隙 / 低频 / 声学超材料

Key words

sound insulation performance / sound insulation bandgap / low-frequency / acoustic metamaterials

引用本文

导出引用
江立1, 2, 夏利娟1, 2. 薄膜-质量型声学超材料隔声性能及带隙研究[J]. 振动与冲击, 2025, 44(11): 196-202
JIANG Li1, 2, XIA Lijuan1, 2. Sound insulation performance and bandgap of mass-attached membrane-type acoustic metamaterials[J]. Journal of Vibration and Shock, 2025, 44(11): 196-202

参考文献

[1] 陈实.基于IMO新标准的船舶舱室噪声研究[D].大连理工大学,2013.
Cheng Shi. Study on ship cabin noise with IMO new criterion[D]. Dalian University of Technology, 2013.
[2] LU K, WU J H, GUAN D, et al. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial[J/OL]. AIP Advances, 2016, 6(2): 025116.
[3] 于相龙,周济. 智能超材料研究与进展[J].材料工程,2016,44(07):119-128.
YU X L, ZHOU J. Research Advance in Smart Metamaterials[J]. Journal of Materials Engineering,2016,44(07):119-128.
[4] LIU Z, ZHANG X, MAO Y, et al. Locally Resonant Sonic Materials[J/OL]. Science, 2000, 289(5485): 1734-1736.
[5] YAO S, ZHOU X, HU G. Investigation of the negative-mass behaviors occurring below a cut-off frequency[J/OL]. New Journal of Physics, 2010, 12(10): 103025.
[6] XIAO Y, WEN J H, WEN X S. Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators[J]. Journal of Sound and Vibration, 2012.
[7] 梅军,杨旻,杨志宇,等. 薄膜型负质量密度声学超常介质[J]. 物理, 2010, 39(4): 243-247.
MEI J, YANG M, YANG Z Y, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical, 2010, 39(4):234-247.
[8] SUI N, YAN X, HUANG T Y, et al. A lightweight yet sound-proof honeycomb acoustic metamaterial[J/OL]. Applied Physics Letters, 2015, 106(17): 171905.
[9] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials[J/OL]. Journal of Applied Physics, 2010, 108(11): 114905.
[10] 牛嘉敏,吴九汇. 非对称类声学超材料的低频宽带吸声特性[J/OL]. 振动与冲击, 2018, 37(19): 45-49+68.
NIU M J, WU J H. Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials[J/OL]. Journal of Vibration and Shock, 2018, 37(19): 45-49+68.
[11] 尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用[J].力学进展, 2022, 52(03): 508-586.
YIN J F, CAI L, FANG X, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J]. Advances in Mechanics, 2022, 52(03): 508-586.
[12] ROSS B W, BURDISSO R A. Low frequency passive noise control of a piston structure with a weak radiating cell[J/OL]. The Journal of the Acoustical Society of America, 1999, 106(1): 226-232.
[13] Kinsler L E , Frey A R , Mayer W G .Fundamentals of Acoustics[J].Architectural Acoustics, 1963, 16(8):56-57.DOI:10.1063/1.3051072.
[14] 曹卫锋,白鸿柏,朱庆. 薄膜型声学超材料的低频吸收性能研究[J/OL]. 振动与冲击, 2018, 37(14): 188-194+238.
CAO W F, BAI H B, ZHU Q. Analysis on the low frequency acoustic absorption performance of a metamaterial membrane[J/OL]. Journal of Vibration and Shock, 2018, 37(14): 188-194+238.
[15] 朱庆,白鸿柏,路纯红,等. 薄膜超材料的等效特性分析及试验研究[J/OL]. 振动与冲击, 2017, 36(18): 91-97.
ZHU Q, BAI H B,LU C H, et al. Analysis on the equivalent properties of metamaterial membranes[J/OL]. Journal of Vibration and Shock, 2017, 36(18): 91-97.

PDF(2112 KB)

137

Accesses

0

Citation

Detail

段落导航
相关文章

/