功能梯度二维壁板的非线性颤振特性分析

汪卫东, 韩明君, 冯瑞龙

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 203-214.

PDF(4713 KB)
PDF(4713 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 203-214.
振动理论与交叉研究

功能梯度二维壁板的非线性颤振特性分析

  • 汪卫东,韩明君*,冯瑞龙
作者信息 +

Nonlinear flutter characteristics analysis of functionally graded two-dimensional panel

  • WANG Weidong, HAN Mingjun*, FENG Ruilong
Author information +
文章历史 +

摘要

基于Von Kármán非线性应变-位移关系和一阶活塞气动理论研究功能梯度壁板的非线性颤振特性分析。考虑不同梯度指数和孔隙率下功能梯度壁板,采用Galerkin法将功能梯度壁板的控制方程在整个气动弦长上进行积分变换得到非线性方程,再利用Routh-Hurwitz系统稳定性判据,将Hopf分岔化为非线性方程求根问题,求解出无量纲临界频率和无量纲临界流速。通过算例,分析了各参数变量对壁板气动弹性的稳定性影响,最后通过Runge-Kutta法对系统的气动弹性稳定性进行理论验证,其研究结果将为功能梯度壁板的设计优化提供理论依据。

Abstract

Nonlinear vibration characterization of functionally graded panels is investigated based on von Kármán nonlinear strain-displacement relationship and first-order piston aerodynamic theory. Considering the functionally graded panels under different gradient indices and porosities, the Galerkin method is used to obtain the nonlinear equations by integrally transforming the control equations of the functionally graded panels over the whole aerodynamic chord length, Then, the Routh-Hurwitz system stability criterion is used to transform the Hopf bifurcation into the root problem of the nonlinear equation, and the dimensionless critical frequency and dimensionless critical velocity are solved. Through the arithmetic example, the influence of each parameter variable on the aeroelastic stability of the panel is analyzed. Finally, the aeroelastic stability of the system is theoretically verified by the Runge-Kutta method. The research results will provide a theoretical basis for the design optimization of the functionally graded panels.

关键词

功能梯度材料 / Hopf分岔 / 二维壁板 / 气动弹性

Key words

Functionally Graded Materials / Hopf Bifurcation / Two-Dimensional panels / Aeroelasticity

引用本文

导出引用
汪卫东, 韩明君, 冯瑞龙. 功能梯度二维壁板的非线性颤振特性分析[J]. 振动与冲击, 2025, 44(11): 203-214
WANG Weidong, HAN Mingjun, FENG Ruilong. Nonlinear flutter characteristics analysis of functionally graded two-dimensional panel[J]. Journal of Vibration and Shock, 2025, 44(11): 203-214

参考文献

[1] 王壮壮,王腾,丁艳梅,等.基于高阶剪切变形理论的功能梯度板自由振动分析简化模型[J].振动工程学报,2024,37(03):384-393.
WANG Zhuang-zhuang, WANG Teng, DING Yan-mei, et al. Simplified model for free vibration analysis of functionally graded plates based on high-order shear deformation theory [J]. Journal of vibration engineering, 2024, 37 (03) : 384-393.
[2] 赵英治,唐怀平,赖泽东,等.弹性地基上多孔二维功能梯度材料微梁自由振动研究[J].应用数学和力学,2023,44(11):1354-1365.
ZHAO Ying-zhi, TANG Huai-ping, LAI Ze-dong, et al. Free vibration of porous two-dimensional functionally graded material microbeams on elastic foundations [J].Applied mathematics and mechanics, 2023,44 (11): 1354-1365.
[3] 李成龙,赵伟东.横向非均匀温度场作用的FGM夹层梁热屈曲分析[J].青海大学学报,2024,42(02):60-67.
LI Cheng-long, ZHAO Wei-dong. Thermal buckling analysis of FGM sandwich beams under transverse non-uniform temperature field [J]. Journal of Qinghai University, 2024,42 (02): 60-67.
[4] Patil H H, Pitchaimani J, Eltaher M A. Buckling and vibration of beams using Ritz method: effects of axial grading of GPL and axially varying load[J]. Mechanics of Advanced Materials and Structures, 2024, 31(16): 3861-3874.
[5] Malakzadeh Fard K, Pourmoayed A. Dynamic Stability Analysis of FGM Beams Based on the Nonlinear Timoshenko Model[J]. Journal of Computational Methods in Engineering, 2023, 42(1): 63-76.
[6] Meski K, Mamen B, Menasria A. Analytical solutions for the thermo-mechanical bending of FG beams using a higher order shear deformation theory (HSDT)[C]//MATEC Web of Conferences. EDP Sciences, 2024, 394: 03004.
[7] 黄志诚,韩梦娜,王兴国,等.弹性地基上非对称多孔功能梯度材料夹层板的自由振动[J].振动与冲击,2024,43(10):156-163.
HUANG Zhi-cheng, HAN Meng-na, WANG Xing-guo, et al. Free vibration of an asymmetric porous functionally graded material sandwich plate on an elastic foundation [J]. Journal of vibration and shock, 2024,43 (10): 156-163.
[8] LI F, SONG Z. Aeroelastic flutter analysis for 2D Kirchhoff and Mindlin panels with different boundary conditions in supersonic airflow[J]. Acta Mechanica, 2014, 225(12):3339-3351.
[9] LI F, SONG Z. Flutter and thermal buckling control for composite laminated panels in supersonic flow[J]. Journal of Sound and Vibration, 2013, 332(22):5678-5695.
[10] SONG Z, LI F. Aerothermoelastic analysis and active flutter control of supersonic composite laminated cylindrical shells[J]. Composite Structures, 2013, 106:653-660.
[11] IBRAHIM H H, YOO H H, LEE K S. Supersonic flutter of unctionally graded panels subject to acoustic and thermal loads[J]. Journal of Aircraft, 2009, 46(2):593-600.
[12] 代林桐,邢誉峰.二维功能梯度壁板热颤振本征问题的精确解[J].北京航空航天大学学报,2021,47(10):2097-2104.
DAI Lin-tong, XING Yu-feng. Exact solution of the eigenvalue problem for thermal flutter of two-dimensional functionally graded panel [J].Journal of Beijing University of Aeronautics and Astronautics, 2021,47 (10): 2097-2104.
[13] 王广胜,杨晓东.超音速气流中受热壁板的非线性颤振特性[J].沈阳航空航天大学学报,2014,31(01):20-23.
WANG Guang-sheng, YANG Xiao-dong. Nonlinear flutter characteristics of heated panels in supersonic airflow [J]. Journal of Shenyang Aerospace University, 2014,31 (01): 20-23.
[14] 曹丽娜. 超音速流中飞行器壁板的气动弹性稳定性研究[D]. 长春:吉林大学, 2020.
CAO Li-na. Research on aeroelastic stability of aircraft panel in supersonic flow[D]. Changchun: JiLin University, 2020.
[15] 杨智春,周建,谷迎松.超音速气流中受热曲壁板的非线性颤振特性[J].力学学报,2012,44(1):30-38.
YANG Zhichun, ZHOU Jian, GU Yingsong, et al. Nonlinear thermal flutter of heated curved panels in supersonic air fow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012,44 (1): 30-38.
[16] 韩明君,李金佩,王鹏.超音速流-热载作用下梯度多孔壁板的非线性振动特性分析[J].振动与冲击,2023,42(2):225-234.
HAN Mingjun, LI Jinpei, WANG Peng. Nonlinear vibration characteristics of a gradient porous wall plate under supersonic flow and heat load
 [J]. Journal of Vibration and Shock, 2023,42 (2): 225-234.
[17] 张继业,杨翊仁,曾京. Hopf分岔的代数判据及其在车辆动力学中的应用[J]. 力学学报,2000, 32(5):596-605.
ZHANG Jiye, YANG Yiren, ZENG Jing. An algorithm criterion for hopf bifurcation and its application in vehicle dynamics[J].Chinese Journal of Theoretical and Applied Mechanics 2000, 32(5):596-605.
[18] 陈文成, 陈国良. Hopf分枝的代数判据[J]. 应用数学学报, 1992, 15(2):251-259.
CHEN Wen-cheng, CHEN Guo-liang. An algorithm criterion for hopf bifurcation[J]. Acta Mathematicae Applicatae Sinica, 1992, 15(2):251-259.
[19] HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and applications of Hopf bifurcation [M]. Cambridge: Cambridge University Press, 1981.

PDF(4713 KB)

177

Accesses

0

Citation

Detail

段落导航
相关文章

/