钢纤维和养护制度对超高性能混凝土材料阻尼性能及机理的影响

陈昭晖1, 陶然1, 2, 汪瑶杰1, 3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 245-253.

PDF(3645 KB)
PDF(3645 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 245-253.
土木工程

钢纤维和养护制度对超高性能混凝土材料阻尼性能及机理的影响

  • 陈昭晖*1,陶然1,2,汪瑶杰1,3
作者信息 +

Effects of steel fibers and curing regime on damping property and mechanism of ultra-high performance concrete material

  • CHEN Zhaohui*1,  TAO Ran1,2,  WANG Yaojie1,3
Author information +
文章历史 +

摘要

考虑钢纤维参数和养护制度等因素,研究了超高性能混凝土(UHPC)的阻尼性能和机理。结果表明:掺入钢纤维提升了UHPC阻尼性能,纤维体积掺量为2.5%时UHPC阻尼比较未掺时增加了54.9%;减小钢纤维长径比、采用标准养护可使UHPC具有更好的阻尼性能。合理选择钢纤维参数和养护制度可制备出兼顾阻尼、强度和经济成本的UHPC材料。考虑钢纤维对UHPC阻尼性能的正负效应,建立了UHPC材料阻尼的半经验预测公式。微观层面上,随钢纤维掺量增加、长径比减小以及采用标准养护制度,UHPC基体中掺入钢纤维形成的纤维-基体界面过渡区、微孔隙和微裂缝等内部缺陷会增多,但有利于UHPC材料通过钢纤维的形变、钢纤维-基体界面间摩擦、微裂缝开合、微孔隙变形以及微孔隙内部空气的柔性缓冲等机制产生阻尼耗能。

Abstract

Damping property and mechanism of ultra-high performance concrete (UHPC) were experimentally investigated considering the effects of steel fiber volume content, aspect ratio of steel fiber and curing regime. The results show that steel fibers can improve the damping property of UHPC, which is increased by 54.9% with the steel fiber volume content of 2.5% comparing with that without steel fibers. UHPC has better damping property with smaller aspect ratio of steel fibers and the employment of standard curing. With the reasonable selection of physical parameters of steel fiber and curing regime, UHPC materials with balanced damping property, mechanical strength and economic cost can be produced. A semi-empirical prediction formula for UHPC damping is established by considering the positive and negative effects of steel fibers. From microscale analysis, the addition of steel fibers into the UHPC matrix can introduce initial imperfections, including the fiber-matrix interface transition zones, micropores and microcracks, which are increased with the increasing volume content of steel fibers, the reducing aspect ratio of steel fibers and the application of standard curing. Therefore, the UHPC damping is generated by the deformation of steel fibers, friction between steel fibers and matrix, the opening and closing of microcracks, the strain around micropores, as well as the flexible cushion of air inside the micropores.

关键词

超高性能混凝土(UHPC) / 钢纤维 / 养护制度 / 阻尼性能 / 微观分析

Key words

ultra-high performance concrete (UHPC) / steel fiber / curing regime / damping property / microstructural analysis

引用本文

导出引用
陈昭晖1, 陶然1, 2, 汪瑶杰1, 3. 钢纤维和养护制度对超高性能混凝土材料阻尼性能及机理的影响[J]. 振动与冲击, 2025, 44(11): 245-253
CHEN Zhaohui1, TAO Ran1, 2, WANG Yaojie1, 3. Effects of steel fibers and curing regime on damping property and mechanism of ultra-high performance concrete material[J]. Journal of Vibration and Shock, 2025, 44(11): 245-253

参考文献

[1]  邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13.
SHAO Xudong, FAN Wei, HUANG Zhengyu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13.
[2]  陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24.
CHEN Baochun, JI Tao, HUANG Qingwei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24.
[3]  刘康宁, 尹天一, 余睿. 超高性能混凝土颗粒紧密堆积理论优化探索[J]. 建筑材料学报, 2023, 26(7): 739-745.
LIU Kangning, YIN Tianyi, YU Rui. Optimization exploration of particle close packing theory in ultra-high performance concrete[J]. Journal of Building Materials, 2023, 26(7): 739-745.
[4]  张云升, 张文华, 陈振宇. 综论超高性能混凝土:设计制备•微观结构•力学与耐久性•工程应用[J]. 材料导报, 2017, 31(23): 1-16.
ZHANG Yunsheng, ZHANG Wenhua, CHEN Zhenyu. A complete review of ultra-high performance concrete: Design and preparation, microstructure, mechanics and durability, engineering applications[J]. Materials Reports, 2017, 31(23): 1-16.
[5]  XUE J, BRISEGHELLA B, HUANG F, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844.
[6]  HUH S-B, BYUN Y-J. Sun-yu pedestrian arch bridge, Seoul, Korea[J]. Structural Engineering International. 2005, 15(01): 32-34.
[7]  CHIN W J, KIM Y J, CHO J-R, et al. Dynamic characteristics evaluation of innovative UHPC pedestrian cable stayed bridge[J]. Engineering, 2012, 4: 869-876.
[8]  MAZZACANE P, RICCIOTTI R, TEPLY F. The passerelle des anges footbridge[M]//TOUTLEMONDE François, RESPLENDINO Jacques. Designing and Building with UHPFRC. New Jersey: John Wiley & Sons, 2013: 111-124.
[9]  CHUNG D D L. Structural composite materials tailored for damping[J]. Journal of Alloys and Compounds, 2003, 355(1-2): 216–223
[10] 柯国军, 郭长青, 胡绍全, 等. 混凝土阻尼比研究[J]. 建筑材料学报, 2004, 7(1): 35-40.
KE Guojun, GUO Changqing, HU Shaoquan, et al. Study on the damping ratio of concrete[J]. Journal of Building Materials, 2004, 7(1): 35-40.
[11] 梁超锋, 刘铁军, 邹笃建, 等. 再生混凝土材料阻尼性能研究[J]. 振动与冲击, 2013, 32(9): 160-164.
LIANG Chao-feng, LIU Tie-jun, ZOU Du-jian, et al. Damping capacity of recycled concrete[J]. Journal of Vibration and Shock, 2013, 32(9): 160-164.
[12] CHI L, LU S, YAO Y. Damping additives used in cement-matrix composites: a review[J]. Composites Part B, 2019, 164: 26-36.
[13] 薛刚, 张宪法, 曹美玲. 考虑温度效应的橡胶混凝土阻尼耗能性能试验研究[J]. 振动与冲击, 2020, 39(19): 94-100.
XUE Gang, ZHANG Xianfa, CAO Meiling. Tests for damping energy-dissipation performance of rubber concrete considering temperature effect[J]. Journal of Vibration and Shock, 2020, 39(19): 94-100.
[14] 梅生启, 李韶华, 李鹏飞, 等. 基于分数阶黏弹性模型的混凝土阻尼频率相关性研究[J]. 振动与冲击, 2022, 41(15): 201-208.
MEI Shengqi, LI Shaohua, LI Pengfei, et al. Fractional order viscoelastic model reflecting correlation between concrete material damping and load frequency based on multi-sample data[J]. Journal of Vibration and Shock, 2022, 41(15): 201-208.
[15] 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报: 自然科学版, 2020, 48(1): 58-68.
CHEN Baochun, LIN Yijun, YANG Jian, et al. Review on fiber function in ultra-high performance fiber reinforced concrete[J]. Journal of Fuzhou University (Natural Science Edition), 2020, 48(1): 58-68.
[16] LARSEN I L, THORSTENSEN R T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: a review[J]. Construction and Building Materials, 2020, 256: 119459.
[17] GONG J, MA Y, FU J, et al. Utilization of fibers in ultra-high performance concrete: a review[J]. Composites Part B, 2022, 241: 109995.
[18] ZHAO B, LI X, PAN J, et al. Strengthening mechanism of steel fiber in UHPC: a new fracture phase field model[J]. Journal of Central South University, 2024, 31: 225-236.
[19] GIDRÃO G de M S, KRAHL P A, CARRAZEDO R. Internal damping ratio of ultrahigh-performance fiber-reinforced concrete considering the effect of fiber content and damage evolution[J]. Journal of Materials in Civil Engineering, 2020, 32(12): 04020364.
[20] DEHGHANPOUR H, SUBASI S, GUNTEPE S, et al. Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers[J]. Construction and Building Materials, 2022, 328: 127079.
[21] 柳兵兵. 超高性能混凝土阻尼性能研究[J]. 新型建筑材料, 2022, 49(4): 56-60.
LIU Bingbing. Study on damping performance of ultra-high performance concrete[J]. New Building Materials, 2022, 49(4): 56-60.
[22] WEI H, LIU T, ZHOU A, et al. Toughening static and dynamic damping characteristics of ultra-high performance concrete via interfacial modulation approaches[J]. Cement and Concrete Composites, 2023, 136: 104879.
[23] 河北省市场监督管理局. 超高性能混凝土制备与工程应用技术规程: DB13/T 2946-2019 [S]. 2019.
[24] 中华人民共和国国家质量监督检验检疫总局.活性粉末混凝土: GB/T 31387-2015 [S]. 北京:中国标准出版社, 2015.
[25] YAZICI H, YARDIMCI M Y, AYDIN S, et al. Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes[J]. Construction and Building Materials, 2009, 23(3): 1223-1231.
[26] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3): 262-270.
WU Zhongwei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, 7(3): 262-270.
[27] WANG J, WANG X, DING S, et al. Micro-nano scale pore structure and fractal dimension of ultra-high performance cementitious composites modified with nanofillers[J]. Cement and Concrete Composites, 2023, 141: 105129. 
[28] LONG W-J, LI H-D, MEI L, et al. Damping characteristics of PVA fiber-reinforced cementitious composite containing high-volume fly ash under frequency-temperature coupling effects[J]. Cement and Concrete Composites, 2021, 118: 103911.
[29] DENG Y, ZHANG Z, SHI C, et al. Steel fiber-matrix interfacial bond in ultra-high performance concrete: a review[J]. Engineering, 2023, 22: 215-232.
[30] 杨简, 陈宝春, 吴香国, 等. 新拌超高性能纤维增强混凝土流动性能对其抗压强度的影响[J]. 复合材料学报, 2021, 38(11): 3827-3837.
YANG Jian, CHEN Baochun, WU Xiangguo, et al. Influence of the fresh ultra-high performance fiber reinforced concrete flowability on its compressive strength[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3827-3837.
[31] CHEN J H, ZENG X H, YANG J F, et al. Enhanced damping properties of cement paste containing polyurethane and its improvement mechanism[J]. Construction and Building Materials, 2023, 364: 129986.
[32] GIDRÃO G de M S, KRAHL P A, BOSSE R, et al. Internal damping ratio of normal- and high-strength concrete considering mechanical damage evolution[J]. Buildings, 2024, 14, 2446.
[33] ZHOU C, PEI X, LI W, et al. Mechanical and damping properties of recycled aggregate concrete modified with air-entraining agent and polypropylene fiber[J]. Materials, 2020, 13(8): 2004.

PDF(3645 KB)

Accesses

Citation

Detail

段落导航
相关文章

/