基于改进基线重构的复合材料T型接头导波损伤监测

刘国强, 王莉, 王霞光, 刘钢

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 280-287.

PDF(2636 KB)
PDF(2636 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 280-287.
故障诊断分析

基于改进基线重构的复合材料T型接头导波损伤监测

  • 刘国强*,王莉,王霞光,刘钢
作者信息 +

Guided wave damage monitoring of composite T-joints based on improved baseline reconstruction

  • LIU Guoqiang*, WANG Li, WANG Xiaguang, LIU Gang
Author information +
文章历史 +

摘要

结构载荷会影响导波传播,从而会增加导波损伤识别的不确定性,以致可能引起损伤误判。为了减弱结构载荷对导波损伤识别的影响,本文提出了改进的基线重构载荷补偿方法。该方法可以将基线信号相位补偿到与当前信号相位一致。通过铝板静力拉伸实验和复合材料T型接头在拉伸载荷下的损伤监测,对该方法的有效性进行了验证研究。研究结果表明:该方法可以有效地减弱载荷对导波监测信号相位的影响,且能对拉伸载荷作用下复合材料T型接头损伤进行准确地识别。

Abstract

Structural load has significant effects on propagation of guided waves and therefore can increase the diagnostic uncertainty of the guided wave-based damage detection, which may cause the diagnostic error of damage. In order to mitigate the load effect, a load compensation method based on improved baseline reconstruction is developed in this study, which can compensate the phase of baseline signal to the phase of current signal. The effectiveness of the proposed method is validated by the static tensile test of aluminium panel and damage monitoring of composite T-joint under tensile load. The results show that the proposed method can effectively mitigate the load effect on the phase of guide wave signal, and detect the damage of composite T-joint under tensile load accurately.

关键词

导波 / 载荷补偿 / 复合材料 / T型接头 / 结构健康监测

Key words

guided waves / load compensation / composite / T-joint / structural health monitoring

引用本文

导出引用
刘国强, 王莉, 王霞光, 刘钢. 基于改进基线重构的复合材料T型接头导波损伤监测[J]. 振动与冲击, 2025, 44(11): 280-287
LIU Guoqiang, WANG Li, WANG Xiaguang, LIU Gang. Guided wave damage monitoring of composite T-joints based on improved baseline reconstruction[J]. Journal of Vibration and Shock, 2025, 44(11): 280-287

参考文献

[1] 陈业标,汪 海,陈秀华.飞机复合材料结构强度分析[M].上海:上海交通大学出版社,2011:1-3.
   CHEN Ye-biao, WANG Hai, CHEN Xiu-hua. Strength analysis of composite aircraft structures[M]. Shanghai: Shanghai Jiao Tong University Press, 2011:1-3.
[2] QIU L, YUAN S F, CHANG F K, et al. On-line updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary condition[J]. Smart Materials and Structures, 2014, 23(12):125001.
[3] REN Y Q, QIU L, YUAN S F, et al. Gaussian mixture model and delay-and-sum based 4D imaging of damage in aircraft composite structures under time-varying conditions[J]. Mechanical Systems and Signal Processing, 2020,135,106390.
[4] NAN Y, SHARIF-KHODAEI Z, ALIABADI M H. Damage detection in large composite stiffened panels based on a novel SHM building block philosophy[J]. Smart Materials and Structures, 2021, 30:045004.
[5] 王莉,杨宇,刘国强,等.基于信号响应分析模型的金属结构损伤导波检出概率[J].振动与冲击,2024,43(2):32-41+186.
    WANG Li, YANG Yu, LIU Guo-qiang, et al. Probability of detection of cracks in metal structures using guided wave based on a signal response analysis model[J]. Journal of Vibration and Shock, 2024, 43(2):32-41+186.
[6] NERLIKAR V, MESNIL O, MIORELLI R, et al. Damage detection with ultrasonic guided waves using machine learning and aggregated baselines[J]. Structural Health Monitoring, 2024, 23(1):443-462.
[7] RAMADAS C, BALASUBRAMANIAM K, JOSHI M, et al. Sizing of interface delamination in a composite T-Joint using time-of-flight of Lamb Waves[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(8):757-768.
[8] 刘彬,邱雷,袁慎芳,等.复合材料T型接头损伤监测的概率成像方法[J].振动、测试与诊断,2015,35(3):519-524.
    LIU Bin, QIU Lei, YUAN Shen-fang, et al. The probability imaging algorithm of composite T-joint damage monitoring[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35(3):519-524. 
[9] MA X S, BIAN K, LU J Y, et al. Experimental research on detection for interface debond of CFRP T-joints under tensile load[J]. Composite Structures, 2016, 158:359–368.
[10] PHILIBERT M, SOUTIS C, GRESIL M, et al. Damage detection in a composite T-joint using guided Lamb waves[J]. Aerospace, 2018, 5(2):40.
[11] ROY S, LADPLI P, CHANG F K. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers[J]. Journal of Sound and Vibration, 2015, 351:206-220.
[12] 杨宇,王彬文,曹雪洋,等.导波受载荷影响补偿的深度学习神经网络方法[J].振动、测试与诊断,2022,42(4):812-819.
    YANG Yu, WANG Bin-wen, CAO Xue-yang, et al. Guided wave load influence compensation method based on deep learning neural network[J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(4):812-819.
[13] WANG Y S, WANG G, WU D, et al. An improved matching pursuit-based temperature and load compensation method for ultrasonic guided wave signals[J]. IEEE Access, 2020, 8:67530-67541.
[14] LIU G Q, XIAO Y C, ZHANG H, et al. Baseline signal reconstruction for temperature compensation in Lamb wave-based damage detection[J]. Sensors, 2016, 16:1273.
[15] TORKAMANI S, ROY S, BARKEY M E, et al. A novel damage index for damage identification using guided waves with application in laminated composites[J]. Smart Materials and Structures, 2014, 23:09501.

PDF(2636 KB)

43

Accesses

0

Citation

Detail

段落导航
相关文章

/