自治水下机器人及其运动控制技术综述

孟繁贵1, 刘爱民1, 胡岩1, 王宇琛1, 乔路宽1, 张红奎1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 321-338.

PDF(4197 KB)
PDF(4197 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 321-338.
综述

自治水下机器人及其运动控制技术综述

  • 孟繁贵1,刘爱民*1,胡岩1,王宇琛1,乔路宽1,张红奎1, 2
作者信息 +

Overview of autonomous underwater vehicles and their motion control technologies

  • MENG Fangui1, LIU Aimin*1, HU Yan1, WANG Yuchen1, QIAO Lukuan1, ZHANG Hongkui1,2
Author information +
文章历史 +

摘要

自治水下机器人(AUV)因其机动灵活、鲁棒性强、运动范围广等优势广泛应用于水文监测、海底科考、巡逻侦察等领域。为保安全高效地完成各种作业任务,AUV的运动控制技术研究显得尤为重要。本文按照AUV发展的时间进程,重点从运动控制相关角度对国内外AUV的典型产品进行介绍,并展示了团队最新研制的“盛鲸一号”AUV及其运动控制技术。根据AUV的运动控制研究现状,AUV的运动控制可分为路径跟踪、轨迹跟踪和镇定控制三种类型,其研究内容主要集中在制导方案的设计和控制器的优化上。AUV模型不确定、外界干扰和执行器饱和是影响运动控制系统的三大主要挑战。为应对这些难题,深度强化学习、滑模控制、自抗扰控制、神经网络、自适应控制、S面控制和模糊控制等智能控制技术已得到广泛应用,能够有效抑制AUV动力学模型变化以及海浪、洋流等环境干扰对跟踪精度的影响。针对执行器饱和问题,模型预测控制、深度强化学习和滑模控制技术表现尤为突出。现有研究显示,信息型AUV的数量较多,AUV的运动控制系统在精确性和鲁棒性方面具有显著优势。未来AUV的发展将聚焦于采用可再生能源驱动的长航程AUV和具备自主操纵机构的多模式AUV。同时,AUV的运动控制趋势将向低功耗运动控制和集群运动控制方向发展。

Abstract

Autonomous underwater vehicles (AUVs) are widely used in various fields such as hydrological monitoring, underwater exploration, and patrol reconnaissance, due to their mobility, robustness, and extensive operational range. To ensure the safe and efficient completion of various tasks, the research on motion control technology for AUVs is of paramount importance. This paper provides a chronological overview of the development of AUVs, focusing on typical products both domestically and internationally, with an emphasis on motion control technologies. Additionally, it presents the "Sheng Whale I" AUV developed by the team, along with its motion control technology. Based on the current state of AUV motion control research, strategies can be classified into path tracking, trajectory tracking, and stabilization control. Research in this field primarily focuses on the design of guidance schemes and the optimization of controllers. The main challenges affecting AUV motion control systems include model uncertainties, external disturbances, and actuator saturation. To address these challenges, intelligent control techniques such as deep reinforcement learning, sliding mode control, active disturbance rejection control, neural networks, adaptive control, S-plane control, and fuzzy control have been widely applied. These methods effectively mitigate the impact of changes in the AUV's dynamic model, as well as environmental disturbances like waves and ocean currents, on tracking accuracy. For actuator saturation issues, model predictive control, deep reinforcement learning, and sliding mode control have shown particularly promising results. Existing research indicates that information-based AUVs are numerous, and the motion control systems of AUVs demonstrate significant advantages in terms of accuracy and robustness. Future developments in AUVs will focus on long-range vehicles powered by renewable energy and multi-mode AUVs equipped with autonomous maneuvering capabilities. Additionally, the trend in AUV motion control will shift towards low-power motion control and swarm motion control.

关键词

自主水下机器人 / 路径跟踪 / 轨迹跟踪 / 点镇定

Key words

autonomous underwater vehicle / path following / trajectory tracking / stabilization control

引用本文

导出引用
孟繁贵1, 刘爱民1, 胡岩1, 王宇琛1, 乔路宽1, 张红奎1, 2. 自治水下机器人及其运动控制技术综述[J]. 振动与冲击, 2025, 44(11): 321-338
MENG Fangui1, LIU Aimin1, HU Yan1, WANG Yuchen1, QIAO Lukuan1, ZHANG Hongkui1, 2. Overview of autonomous underwater vehicles and their motion control technologies[J]. Journal of Vibration and Shock, 2025, 44(11): 321-338

参考文献

[1] 宋保维,潘光,张立川,等.自主水下航行器发展趋势及关键技术[J].中国舰船研究,2022,17(05):27-44.
SONG Baowei, PAN Guang, ZHANG Lichuan, et al. Development trend and key technologies of autonomous underwater vehicles[J]. Chinese Journal of Ship Research, 2022, 17(5): 27–44.
[2] YOUNG F C. Phoenix autonomous underwater vehicle (AUV): Networked control of multiple analog and digital devices using LonTalk[D]. California: University of California at Berkeley Thesis Collection, 1997.
[3] MARCO D B, HEALEY A J, MCGHEE R B, et al. Control systems architecture, navigation, and communication research using the NPS phoenix underwater vehicle[C]//6th International Advanced Robotics Program Workshop on Underwater Robotics, Toulon, France. 1996.
[4] MCPHAIL S D, PEBODY M. Autosub-1. A distributed approach to navigation and control of an autonomous underwater vehicle[J]. 1997, 429: 16-22.
[5] HAGEN P E. Auv/uuv mission planning and real time control with the hugin operator system[C]//MTS/IEEE oceans 2001. an ocean odyssey. conference proceedings (IEEE cat. no. 01CH37295). Hawaii, 2001, 1: 468-473.
[6] GERMAN C R, YOERGER D R, JAKUBA M, et al. Hydrothermal exploration by AUV: Progress to-date with ABE in the Pacific, Atlantic & Indian Oceans[C]// 2008 IEEE/OES Autonomous Underwater Vehicles. Woods Hole, 2008:1-5.
[7] TOAL D, FLANAGAN C, MOLNAR L. Reactive control in the design of an autonomous underwater vehicle[C]//Proceedings presented at Artificial Neutral Networks in Engineering Conference: Smart Engineering System Design, St. Louis, MO, USA. 2002.
[8] ESKESEN J, OWENS D, SOROKA M, et al. Design and performance of Odyssey IV: a deep ocean hover-capable AUV[R]. MITSG 09-08, Cambridge, Massachusetts, U.S.: Massachusetts Institute of Technology. Sea Grant College Program, 2009.
[9] URA T, OBARA T. Sea trials of AUV "R-One Robot" equipped with a closed cycle diesel engine system[C]// Oceans '97. MTS/IEEE Conference Proceedings, California, 1997, 2:987-993.
[10] URA T, OBARA T. Twelve hour operation of cruising type AUV "R-One Robot" equipped with a closed cycle diesel engine system[C]// Oceans '99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No. 99CH37008). Washington, 1999, 3:1188-1193.
[11] KIM K, URA T. 3-dimensional trajectory tracking control of an auv “r-one robot” considering current interaction[C]//ISOPE International Ocean and Polar Engineering Conference. Kamakura, Japan, 2002.
[12] KIM K, URA T. "Optimal and quasi-optimal navigations of an AUV in current disturbances."2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2008.
[13] MARCO D B, HEALEY A J. Current developments in underwater vehicle control and navigation: The NPS ARIES AUV[C]//OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158). Rhode Island, 2000, 2: 1011-1016.
[14] KINSEY J C, YOERGER D R, JAKUBA M V,et al. Assessing the Deepwater Horizon oil spill with the sentry autonomous underwater vehicle[C]// IEEE/RSJ International Conference on Intelligent Robots & Systems. San Francisco, California, 2011.
[15] PONTBRIAND C, FARR N, HANSEN J,et al. Wireless data harvesting using the AUV Sentry and WHOI optical modem[C]//OCEANS 2015-MTS, Washington, 2015: 1-6.
[16] MCPHAIL S. Autosub6000: A deep diving long range AUV[J]. Journal of Bionic Engineering, 2009, 6(1):55-62.
[17] WHITCOMB L L, JAKUBA M V, KINSEY J C, et al. Navigation and control of the Nereus hybrid underwater vehicle for global ocean science to 10,903 m depth: Preliminary results[C]// IEEE International Conference on Robotics & Automation. IEEE, 2010:594-600.
[18] 何希盈,蔡祥.蓝鳍水下机器人公司及其Bluefin系列AUV[J].水雷战与舰船防护,2014,22(3):83-84.
HE Xiying, CAI Xiang. Bluefin Underwater Robot Company and its Bluefin Series AUV[J]. Mine Warfare and Ship Protection, 2014, 22(3): 83-84.
[19] BONDARYK J E. Bluefin autonomous underwater vehicles: Programs, systems, and acoustic issues[J]. The Journal of the Acoustical Society of America, 2004, 115(5):2615-2615.
[20] BLIDBERG D R. The development of autonomous underwater vehicles (AUV); a brief summary[C]//Ieee Icra. Seoul, South Korea, 2001, 4(1): 122-129.
[21] HELGASON B. Low speed modeling and simulation of Gavia AUV[D]. Reykjavik, Iceland: Reykjavik University, 2012.
[22] JIANG Z, LU B, WANG B, et al. A prototype design and sea trials of an 11,000 m autonomous and remotely-operated vehicle Dream Chaser[J]. Journal of Marine Science and Engineering, 2022, 10(6): 812.
[23] WONG K. Kongsberg Maritime unveils HUGIN Endurance AUV[J]. Jane's International Defense Review, IHS Jane's International Defense Review, 2021(4): 54.
[24] 方红伟,李紫嫣.自主水下航行器能源系统技术综述[J].电力系统及其自动化学报,2022,34(8):18-26.
FANG Hongwei, LI Ziyan. Review of energy system technologies for autonomous underwater vehicles [J]. Journal of Electric Power Systems and Automation, 2022, 34(8): 18-26.
[25] CRIMMINS D M, PATTY C T, BELIARD M A, et al. Long-Endurance Test Results of the Solar-Powered AUV System[C]. OCEANS 2006, Boston, MA, USA, 2006, pp. 1-5.
[26] MANLEY J E, LEONARDI A, BEAVERSON C. Research to operations: Evaluating unmanned surface vehicles[C]//OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 2016, pp. 1-5.
[27] ARESTI L, CHRISTODOULIDES P, MICHAILIDES C, et al. Reviewing the energy, environment, and economy prospects of Ocean Thermal Energy Conversion (OTEC) systems[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103459.
[28] Daniel T. A brief history of OTEC research at NELHA. Natural Energy Laboratory of Hawaii Authority, Kailua-Kona, HI, USA, 1999.
[29] Hiroki K, Sadayuki J, Haruo U. The present status and features of OTEC and recent aspects of thermal energy conversion technologies[C]// 24th Meeting of the UJNR Marine Facilities Panel. Honolulu, 2004.
[30] Ravindran M. The Indian 1MW floating OTEC plant–an overview, Keynote address[C]. The International OTEC/DOWA Conference, Tokyo, Japan, 1999, 31.
[31] Jeremy Hsu. These Underwater Drones Use Water Temperature Differences To Recharge[EB/OL]. [2020-09-03]. https://spectrum.ieee.org/renewable-power-underwater-drones.
[32] WEBB D C, SIMONETTI P J, JONES C P. SLOCUM: an underwater glider propelled by environmental energy[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 447-452.
[33] BUCKLE J R, KNOX A, SIVITER J, et al. Autonomous underwater vehicle thermoelectric power generation[J]. Journal of Electronic Materials, 2013, 42: 2214-2220.
[34] HOU H, GALEANA A A, SONG Y,et al. Design of a novel energy harvesting mechanism for underwater gliders using thermal buoyancy engines[J]. Ocean Engineering, 2023, 278: 114310.
[35] 李硕,郭廷志,封锡盛.“探索者”号无缆水下机器人控制系统[J].机器人技术与应用,1995(04):6-9.
LI Shuo, GUO Tingzhi, FENG Xifeng. Untethered underwater vehicle control system for Explorer [J]. Robot Technology and Application, 1995(4) : 6-9.
[36] 陈建平.我国潜水器发展状况及存在的问题[J].机器人技术与应用,1999(2):7-9.
CHEN Jianping. Development status and Existing Problems of Submersible in China [J]. Robot Technology and Application,1999(2):7-9.
[37] 李一平,封锡盛.“CR-01”6000m自治水下机器人在太平洋锰结核调查中的应用[J].高技术通讯,2001,(01):85-87.
LI Yiping, FENG Xisheng. Application of CR-01 6000m autonomous underwater vehicle in Pacific manganese nodules investigation [J]. High Technology Communication, 2001(1):85-87.
[38] 李一平,燕奎臣.“CR-02”自治水下机器人在定点调查中的应用[J].机器人,2003(4):359-362.
LI Yiping, YAN Kuichen. Application of "CR-02" Autonomous underwater Vehicle in Fixed point survey [J]. Robot, 2003(4):359-362.
[39] 李一平,李硕,张艾群.自主/遥控水下机器人研究现状[J].工程研究-跨学科视野中的工程,2016,8(2):217-222.
LI Yiping, LI Shuo, ZHANG Aiqun. Research status of autonomous/remote-controlled underwater vehicle [J]. Engineering Research - Engineering from an Interdisciplinary Perspective, 2016,8 (2) : 217-222.
[40] 陈惠玲,徐会希.“潜龙一号”完成海试[N].中国国土资源报,2013-05-23(1).
[41] 彭科峰.中科院沈阳自动化所研发的“潜龙二号”通过验收[J].军民两用技术与产品,2016(15):25.
PENG Kefeng. The "Qianlong 2" developed by Shenyang Institute of Automation of Chinese Academy of Sciences passed acceptance [J]. Dual-use Technologies and Products, 2016(15):25.
[42] 李硕,刘健,徐会希等.我国深海自主水下机器人的研究现状[J].中国科学:信息科学,2018,48(9):1152-1164.
LI Shuo, LIU Jian, XU Huixi, et al. Research status of deep-sea autonomous underwater vehicle in China [J]. Science in China: Information Science, 2018,48 (9) : 1152-1164.
[43] 唐元贵,王健,陆洋,等.“海斗号”全海深自主遥控水下机器人参数化设计方法与试验研究[J].机器人,2019,41(6):697-705.
TANG Yuangui, WANG Jian, LU Yang, et al. Parametric design method and experimental study of "Haidou" deep-sea autonomous remotely. operated underwater vehicle [J]. Robot, 2019, 41(6): 697-705.
[44] 甘永,王丽荣,刘建成,等.水下机器人嵌入式基础运动控制系统[J].机器人,2004(3):246-249.
GAN Yong, WANG Lirong, LIU Jiancheng. Embedded basic motion control system of underwater robot[J].Robot, 2004(3):246-249.
[45] 王玉甲.水下机器人智能状态监测系统研究[D].哈尔滨:哈尔滨工程大学,2006.
[46] 张铭钧,高萍,徐建安.基于神经网络的自治水下机器人广义预测控制[J].机器人,2008(1):91-96.
ZHANG Mingjun, GAO Ping, XU, Jianan. Generalized predictive control of autonomous underwater vehicle based on neural network [J]. Robot, 2008(1):91-96.
[47] LEE S. A case study of AI DEFENSE applications in major northeast asian states and strategies for building a ROK’s AI-based national defense system[J]. Terrorism, 2021: 1.
[48] DENG Z, ZHU D, XU P, et al. Hybrid underwater vehicle: ARV design and development[J]. Sensors & Transducers, 2014, 164(2): 278.
[49] 邓志刚,袁芳,朱大奇.基于生物启发的水下机器人路径跟踪控制[J].中南大学学报(自然科学版),2017,48(5):1234-1241.
DENG, Zhigang, YUAN Fang, ZHU Daqi. Path following control of underwater robot based on bio-inspiration [J]. Journal of Central South University (Science and Technology), 2017, 48(5), 1234-1241.
[50] 于林.多关节深海潜水器系统建模与姿态控制[D].天津:天津大学,2020.
[51] 杨绍琼,李元昊,孙通帅,等.“海燕”号谱系化水下滑翔机技术发展与应用[J].水下无人系统学报,2023,31(1):68-85.
YANG Saoqiong, LI Yuanhao, SUN Tongshuai, et al. Technological development and application of the "Haiyan" series underwater glider [J]. Journal of Underwater Unmanned Systems, 2023, 31(1): 68-85.
[52] HE J, CAo Y, HUANG Q, et al. A new type of bionic manta ray robot[C]//Global Oceans 2020: Singapore–US Gulf Coast. Singapore, 2020: 1-6.
[53] ZHOU J, HUANG H, HUANG S H, et al. AUH, a new technology for ocean exploration[J]. Engineering, 2023, 25: 21-27.
[54] 姜勇.基于CFD的水下直升机水动力及运动稳定性能的研究[D].杭州:浙江大学,2018.
[55] 王鹏,尤云祥,庄广胶,等.全海深ARV抛载系统研发及深海试验[J].海洋工程,2023,41(1):82-92.
WANG Peng, YOU Yunxiang, ZHUANG Guangjiao, et al. Development and deep-sea testing of the full-ocean-depth ARV release system [J]. Ocean Engineering, 2023, 41(1): 82-92.
[56] 佚名.“悟空”号创我国AUV潜深新纪录[J].传感器世界,2021,27(04):31.
Anonymity. "Wukong" sets a new depth record for China's AUV [J]. Sensor World, 2021, 27(04): 31.
[57] JIANG Z, LU B, WANG B, et al. A prototype design and sea trials of an 11,000 m autonomous and remotely-operated vehicle dream chaser[J]. Journal of Marine Science and Engineering, 2022, 10(6): 812.
[58] 深之蓝海洋科技股份有限公司.深之蓝AUV产品中心[EB/OL].https://www.deepinfar.com/zh-product-center-auv?productType=AUV.
[59] 天津瀚海蓝帆海洋科技有限公司.公司产品介绍[EB/OL].http://www.tjhhlf.com/sys-pr/.
[60] 杭州鳌海海洋工程技术有限公司.AUV自动化产品介绍[EB/OL].https://searobotix.com/vehicle/auv-automatic/.
[61] 湖北海派海洋科技发展有限公司.公司产品信息[EB/OL].https://www.f-sea.com/ProductInfoCategory?categoryId=410794&PageInfoId=0.
[62] Fu K, Wang P, Sun B, et al. Design, Development and Testing of a New Solar-powered Bionic Underwater Glider with Multi-locomotion Modes[C]. OCEANS 2019 - Marseille, Marseille, France, 2019, pp. 1-7.
[63] 汪向前.太阳能AUV概念设计与水动力性能分析[D].哈尔滨:哈尔滨工程大学,2021.
[64] 杨玉林.面向海洋长期作业的AUV设计及纵垂运动控制研究[D].北京:北京化工大学,2024.
[65] 王宇宫,赵江滨,朱风绅,等.摆翼式波浪能发电海洋航行器无水实验系统[J].舰船科学技术,2020,42(3):72-76.
WANG Yugong, ZHAO Jiangbin, ZHU Fengshen, et al. Wave energy generation system for winged marine vehicle in dry-run experimental setup [J]. Ship Science and Technology, 2020, 42(3): 72-76.
[66] CHEN W, ZHOU B, HUANG H, et al. Design, modeling and performance analysis of a deployable WEC for ocean robots[J]. Applied Energy, 2022, 327: 119993.
[67] 杨瑞哲.基于液压式PTO的AUV波浪能随体发电技术研究[D].哈尔滨:哈尔滨工程大学,2023.
[68] 佚名.距离水下永动还有多远?我国首台自供能漂流浮标下水了[J].传感器世界,2018,24(01):41.
Anonymity. How far is underwater perpetual motion? China's first self-powered drifting buoy submerged [J]. Sensor World, 2018, 24(01): 41.
[69] 杨亚楠.温差能—电能复合动力水下滑翔机系统设计与性能分析[D].天津:天津大学,2017.
[70] MENG F, LIU A, HU Y, et al. A Control Method for Path Following of AUVs Considering Multiple Factors Under Ocean Currents[J]. Journal of Marine Science and Engineering, 2024, 12(11): 2045-2068.
[71] 王尘.UUV集群运动控制算法研究[D].成都:电子科技大学,2022.
[72] 叶辉,王丽琦,智鹏飞等.基于干扰观测器的AUV三维路径自适应跟踪控制[J].江苏科技大学学报(自然科学版),2019,33(5):52-59.
YE Hui, WANG Liqi, ZHI Pengfei, et al. AUV 3D path adaptive tracking control based on interference observer [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2019,33 (5) : 52-59.
[73] 向先波.二阶非完整性水下机器人的路径跟踪与协调控制研究[D].武汉:华中科技大学,2010.
[74] HESHMATI A S, NIKOU A, DIMAROGONAS D V. Robust trajectory tracking control for underactuated autonomous underwater vehicles in uncertain environments[J]. IEEE Transactions on Automation Science and Engineering, 2020, 18(3): 1288-1301.
[75] 王晓伟.欠驱动AUV运动控制和路径规划研究[D].哈尔滨:哈尔滨工程大学,2020.
[76] MOHAMED S A, ABDELGELIL O K, ELHOUT O A, et al. Design of a highly-efficient embedded controller for AUV stabilization and trajectory tracking using minimal computational resources[C]//2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES). Giza, Egypt, 2021: 155-160.
[77] FERNANDES M, SAHOO S R, KOTHARI M. Modeling and Pose Stabilization of a Novel AUV with Vectored Tunnel Thrusters[C]//2022 European Control Conference (ECC). London, United Kingdom, 2022: 663-668.
[78] DUAN Y, XIANG X, LIU Y, et al. Underactuated AUV Path Following Control Based on Adaptive Backstepping Method[C]// 2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE), Hong Kong, China, 2023, pp. 332-336.
[79] 王浩亮,任恩帅,卢丽宇,等.面向海底管道巡检的AUV三维自适应路径跟踪[J].船舶工程,2024,46(4):166-174.
WANG Hongliang, REN Enshuai, LU Liyu, et al. Three-dimensional adaptive path tracking for AUV in underwater pipeline inspection [J]. Ship Engineering, 2024,46(4):166-174.
[80] XIANG X, LAPIERRE L, JOUVENCEL B. Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration[J]. Robotics and Autonomous Systems, 2015, 67: 14-22.
[81] SHEN G, ZHOU Z, XIA C C, et al. Path tracking of AUV based on improved line-of-sight method[C]//OCEANS 2022, Hampton Roads. Hampton Roads, VA, USA, 2022: 1-5.
[82] 刘义,曾智华,邹早建,等.基于积分视线法的船舶自抗扰轨迹跟踪控制研究[J].中国造船,2021,62(1):133-144.
LIU Yi, ZENG Zihua, ZOU Zaojian, et al. Research on ship trajectory tracking control based on integral visual method [J]. China Shipbuilding, 2021, 62(1):133-144.
[83] CHEN J, LONG Y, LI T, et al. Integral Backstepping Based ADRC for Path Following of Underactuated Surface Vessel[C]//2021 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). Chengdu, China, 2021: 260-265.
[84] He L, Zhang Y, Fan G, et al. Three-Dimensional Path Following Control of Underactuated AUV Based on Nonlinear Disturbance Observer and Adaptive Line-Of-Sight Guidance[J]. IEEE Access, 2024.
[85] 雷超凡,初秀民,柳晨光,等.参考航速时变的无人船轨迹跟踪控制方法[J].舰船科学技术,2023,45(11):83-87.
LEI Chaofan, CHU Xiumin, LIU Chenguang, et al. Trajectory tracking control method for unmanned ships with reference speed variation [J]. Ship Science and Technology,2023, 45(11), 83-87.
[86] XU H, HINOSTROZA M A, GUEDES S C. Modified vector field path-following control system for an underactuated autonomous surface ship model in the presence of static obstacles[J]. Journal of Marine Science and Engineering, 2021, 9(6): 652.
[87] 初庆栋,尹羿博,龚小旋,等.基于双偶极向量场的欠驱动无人船目标跟踪制导方法[J].中国舰船研究,2022,17(4):32-37.
CHU Qingdong, YIN Yibo, GONG Xiaoxuan, et al. Target tracking guidance method for underactuated unmanned surface vessel based on dual dipole vector field [J]. Chinese Journal of Ship Research, 2022, 17(4), 32-37.
[88] YAO W, LIN B, ANDERSON B D O, et al. The Domain of Attraction of the Desired Path in Vector-Field-Guided Path Following[J]. IEEE Transactions on Automatic Control, 2023, 68(11): 6812-6819.
[89] 李旻,周铸,吕志彪等.基于改进反步法的AUV直线路径跟随[J].舰船电子工程,2023,43(2):47-53.
LI Min, ZHOU Zhu, LÜ, Zhibiao, et al. AUV linear path following based on improved backstepping method [J]. Ship Electronic Engineering, 2023, 43(2), 47-53.
[90] LIU Y, LIU J, WANG Q G, et al. Adaptive command filtered backstepping tracking control for AUVs considering model uncertainties and input saturation[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 70(4): 1475-1479.
[91] 周铸,李文魁,吕志彪,等.扰动不确定的AUV改进反步控制[J].舰船电子工程,2022,42(12):169-174.
ZHOU Zhu, LI Wenkui, LÜ Zhibiao, et al. Improved backstepping control for AUV with disturbance uncertainty [J]. Ship Electronic Engineering, 2022, 42(12), 169-174.
[92] 高锐.基于自抗扰控制的可底栖式AUV运动控制研究[D].哈尔滨工程大学,2023.
[93] NGUYEN C, TRAN M, SAJI N, et al. Neural Network Predictive Control of Explorer Class Autonomous Underwater Vehicle[C]//2022 Australian & New Zealand Control Conference (ANZCC). Gold Coast, Australia, 2022: 1-6.
[94] PRASAD M P R, SINGH A K. Application of Model Predictive Control to Underwater Vehicle Surge Motion Control[C]//2023 International Symposium on Ocean Technology (SYMPOL). Kochi, India, 2023: 1-5.
[95] 郑志航.小型长航程AUV水动力性能研究[D].杭州:中国计量大学,2021.
[96] 薛志刚.基于无人潜水器水动力特性的拖曳水池设计分析[J].工程技术研究,2024,9(7):149-151.
XUE Zhigang. Design and analysis of towing pool based on hydrodynamic characteristics of unmanned submersible [J]. Research on Engineering Technology, 2019, 9(7) : 149-151.
[97] FOSSEN T I. An adaptive line-of-sight (ALOS) guidance law for path following of aircraft and marine craft[J]. IEEE Transactions on Control Systems Technology, 2023, 31(6): 2887-2894.
[98] 王日中,李慧平,崔迪等.基于深度强化学习算法的自主式水下航行器深度控制[J].智能科学与技术学报,2020,2(4):354-360.
WANG Rizhong, LI Huiping, CUI Di et al. Depth control of autonomous underwater vehicle based on Deep reinforcement Learning algorithm [J]. Journal of Intelligent Science and Technology, 2020,2(4):354-360.
[99] SUN Y, RAN X, ZHANG G, et al. AUV path following controlled by modified deep deterministic policy gradient[J]. Ocean Engineering, 2020, 210: 107360.
[100] CARLUCHO I, DE P M, WANG S, et al. AUV position tracking control using end-to-end deep reinforcement learning[C]//OCEANS 2018 MTS/IEEE Charleston. Charleston, South Carolina, 2018.
[101] SUN Y, ZHANG C, ZHANg G, et al. Three-dimensional path tracking control of autonomous underwater vehicle based on deep reinforcement learning[J]. Journal of Marine Science and Engineering, 2019, 7(12): 443.
[102] GUERRERO J, ANTONIO E, MANZANILLA A, et al. Autonomous underwater vehicle robust path tracking: Auto-adjustable gain high order sliding mode controller[J]. IFAC-PapersOnLine, 2018, 51(13): 161-166.
[103] YANG X, ZHU X, LIU W, et al. A hybrid autonomous recovery scheme for AUV based dubins path and non-singular terminal sliding mode control method[J]. IEEE Access, 2022, 10: 61265-61276.
[104] 刘帅,罗伟林.基于输入饱和抑制和神经网络的欠驱动AUV轨迹跟踪滑模控制[J].中国造船,2023,,64(6):240-249.
LIU Shuai, LUO Weilin. Underactuated AUV trajectory tracking sliding mode control based on input saturation suppression and neural network [J]. China Shipbuilding, 2023, 64(6), 240-249.
[105] YANG X, YAN J, HUA C, et al. Trajectory tracking control of autonomous underwater vehicle with unknown parameters and external disturbances[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(2): 1054-1063.
[106] CHU Z, XIANG X, ZHU D, et al. Adaptive fuzzy sliding mode diving control for autonomous underwater vehicle with input constraint[J]. International Journal of Fuzzy Systems, 2018, 20(5): 1460-1469.
[107] 姚绪梁,王晓伟.基于MPC导引律的AUV路径跟踪和避障控制[J].北京航空航天大学学报,2020,46(6):1053-1062.
YAO Xuliang, WANG Xiaowei. AUV path tracking and obstacle avoidance Control based on MPC guidance law [J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(06) : 1053-1062.
[108] WU Y, XU H, JIANG Z. A Modified Active Disturbance Rejection Controller Based on Radial Basis Function Neural Network for AUV Attitude Control[C]//2022 International Conference on Advanced Robotics and Mechatronics (ICARM). Guilin, China, 2022: 962-966.
[109] SONG W, CHEN Z, SUN M, et al. Reinforcement learning based parameter optimization of active disturbance rejection control for autonomous underwater vehicle[J]. Journal of Systems Engineering and Electronics, 2022, 33(1): 170-179.
[110] 楼鉴路,李文魁,周铸,等.基于线性自抗扰控制的AUV深度控制研究[J].舰船科学技术,2023,45(6):96-101.
LOU Jianlu, LI Wenkui, ZHOU Zhu, et al. Research on AUV depth Control based on linear active Disturbance Rejection Control [J]. Ship Science and Technology, 2019, 45(6) : 96-101.
[111] JI D, WANG X, XU M, et al. Trajectory Tracking of AUV under Current Disturbance Based on Adaptive LADRC[C]//2023 2nd International Conference on Automation, Robotics and Computer Engineering (ICARCE). Wuhan, China, 2023: 1-5..
[112] 张峥峥.基于改进型自抗扰控制的水下机器人运动控制系统研究[D].芜湖:安徽工程大学,2022.
[113] 杜佳璐,李健.欠驱动水下机器人三维轨迹跟踪有限时间预设性能控制[J].控制理论与应用,2022,39(2):383-392.
DU Jialu, LI Jian. Finite time preset performance control for 3D trajectory tracking of underactuated underwater vehicle [J]. Control Theory and Applications, 2022, 39(2) : 383-392.
[114] KONG S, SUN J, WANG J, et al. Piecewise compensation model predictive governor combined with conditional disturbance negation for underactuated AUV tracking control[J]. IEEE Transactions on Industrial Electronics, 2022, 70(6): 6191-6200.
[115] LI J, DU J, CHEN C L P. Command-filtered robust adaptive NN control with the prescribed performance for the 3-D trajectory tracking of underactuated AUVs[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(11): 6545-6557.
[116] LIU Y, LIU J, YU J. Singularity Avoidance Fixed-Time Adaptive Neural Control for Autonomous Underwater Vehicles Considering Unmodelled Dynamics and Disturbances[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.
[117] 杨超,郭佳,张铭钧.基于RBF神经网络的作业型AUV自适应终端滑模控制方法及实验研究[J].机器人,2018,40(3):336-345.
YANG Chao, GUO Jia, ZHANG Mingjun. Experimental research on adaptive terminal sliding mode Control of Operational AUV based on RBF neural Network [J]. Robotics, 2018,40(3) : 336-345.
[118] YANG C, YAO F, ZHANG M J. Adaptive backstepping terminal sliding mode control method based on recurrent neural networks for autonomous underwater vehicle[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 1-16.
[119] ZHANG J, XIANG X, LI W, et al. Adaptive neural control of flight-style AUV for subsea cable tracking under electromagnetic localization guidance[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(5): 2976-2987.
[120] 方凯,姚佳琪,李家旺.基于神经网络的欠驱动水下机器人三维同步跟踪和镇定控制[J].控制理论与应用,2021,38(6):731-738.
FANG Kai, YAO Jiaqi, LI Jiawang. 3D synchronous tracking and stabilization control of underactuated underwater vehicle based on Neural network [J]. Control Theory and Applications, 2021, 38(06) : 731-738.
[121] 张广洁,严卫生,高剑.基于模型预测控制的欠驱动AUV直线路径跟踪[J].水下无人系统学报,2017,25(2):82-88.
ZHANG Guangjie, YAN Weisheng, GAO Jian. Linear Path tracking of Underdriven AUV based on Model Predictive Control [J]. Journal of Underwater Unmanned Systems, 2017, 25(2) : 82-88.
[122] SHEN C, SHI Y, BUCKHAM B. Trajectory tracking control of an autonomous underwater vehicle using Lyapunov-based model predictive control[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5796-5805.
[123] 廖宇辰,闫勋,贾晋军,等.基于MPC-DO的自主水下航行器轨迹跟踪控制[J].舰船科学技术,2024,46(2):74-80.
LIAO Yuchen, YAN Xun, JIA Jinjun, et al. Trajectory tracking control of autonomous underwater vehicle based on MPC-DO [J]. Ship Science and Technology, 2024,46(2):74-80.
[124] 黄浩乾,郑康健,马惊天.基于模型预测的AUV轨迹跟踪滑模控制方法[J].中国惯性技术学报,2024,32(2):205-212.
HUANG Haoqian, ZHENG Kangjian, MA Jingtian. AUV trajectory tracking sliding mode Control method based on Model prediction [J]. Chinese Journal of Inertia Technology, 2024,32(2):205-212.
[125] HAO L Y, WANG R Z, SHEN C, et al. Trajectory tracking control of autonomous underwater vehicles using improved tube-based model predictive control approach[J]. IEEE Transactions on Industrial Informatics, 2023, 20(4):5647-5657.
[126] GAO F, WANG H D, KARKOUB M, et al. Extended State Observer based Robust Model Predictive Control for Autonomous Underwater Vehicle[C]//2022 13th Asian Control Conference (ASCC). Jeju, Korea, 2022: 1499-1504.
[127] ZHANG Z, WU Y. Adaptive fuzzy tracking control of autonomous underwater vehicles with output constraints[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(5): 1311-1319.
[128] 李文魁,周铸,宦爱奇,等.自主水下航行器自适应S面三维轨迹跟踪的仿真验证[J].中国舰船研究,2022,17(4):38-46.
LI Wenkui, ZHOU Zhu, HUAN Aiqi, et al. Simulation and verification of adaptive S-plane three-dimensional trajectory tracking for autonomous underwater vehicles [J]. Chinese Ship Research,2022,17(4):38-46.
[129] LIU F, SHEN Y, HE B, et al. 3DOF adaptive line-of-sight based proportional guidance law for path following of AUV in the presence of ocean currents[J]. Applied Sciences, 2019, 9(17): 3518.
[130] 张嘉磊.基于电磁定位引导的AUV探测海缆跟踪控制研究[D].武汉:华中科技大学,2022.
[131] 宫鹏.基于模型预测控制的子母式UUV回收对接控制研究[D].哈尔滨:哈尔滨工程大学,2022.
[132] 曹晓旭.自治式水下管线巡检机器人协调规划与控制技术研究[D].杭州:浙江大学,2018.
[133] 徐鹏飞.11000米ARV总体设计与关键技术研究[D].北京:中国舰船研究院,2014.
[134] 高鹏,万磊,徐钰斐,等.基于无模型自适应控制的底栖式AUV路径点跟踪控制[J].水下无人系统学报,2022,30(4):429-440.
GAO Peng, WAN Lei, XU Yufei, et al. Path point tracking control of benthic AUV based on model-free adaptive control [J]. Journal of Underwater Unmanned Systems, 2022, 30(4): 429-440.

PDF(4197 KB)

72

Accesses

0

Citation

Detail

段落导航
相关文章

/