接触爆炸下玄武岩纤维混凝土板毁伤特性研究

赵小华1, 3, 李亚男1, 赵浩楠1, 王高辉2, 杜雪明1, 3, 方宏远1, 3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 39-49.

PDF(4912 KB)
PDF(4912 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (11) : 39-49.
冲击与爆炸

接触爆炸下玄武岩纤维混凝土板毁伤特性研究

  • 赵小华1,3,李亚男1,赵浩楠*1,王高辉2,杜雪明1,3,方宏远1,3
作者信息 +

Damage characteristics of basalt fiber reinforced concrete slab under contact explosion

  • ZHAO Xiaohua1,3, LI Yanan1, ZHAO Haonan*1, WANG Gaohui2, DU Xueming1,3, FANG Hongyuan1,3
Author information +
文章历史 +

摘要

玄武岩纤维因具有优异的物理力学性能,掺入混凝土中可以增加材料的抗拉和抗弯强度。本文通过开展不同长度和体积掺量的玄武岩纤维混凝土板接触爆炸试验,探究了纤维长度和体积掺量对混凝土板抗爆性能和毁伤模式的影响。在此基础上,采用LS-DYNA有限元软件建立了玄武岩纤维混凝土板接触爆炸全耦合模型,并通过与现场试验结果的对比,验证了所建数值模型的有效性。通过仿真分析,进一步研究了接触爆炸下玄武岩纤维混凝土板的动态毁伤过程,概化了纤维长度、纤维体积掺量、炸药质量对混凝土板毁伤模式的影响规律。结果表明:纤维长度的增加能更好地发挥桥接作用来提高混凝土板的抗裂能力;纤维体积掺量的增大能有效减小混凝土板的毁伤;纤维长度40mm、体积掺量0.5%是提升混凝土板抗爆性能的最优组合之一。

Abstract

Basalt fiber can be incorporated into concrete to increase the tensile and flexural strength of the material due to its excellent physical and mechanical properties. In this paper, contact explosion tests on basalt fiber reinforced concrete slabs with different lengths and volume ratios were carried out to investigate the effects of fiber length and volume ratios on the blast resistance and damage modes of concrete slabs. On this basis, the LS-DYNA finite element software was used to establish a fully coupled model of contact explosion of basalt fiber reinforced concrete slabs, and the validity of the numerical model was verified by comparing with the field test results. Through simulation analysis, the dynamic damage process of basalt fiber-reinforced concrete slabs under contact explosion was further studied, and the effects of fiber length, fiber volume mixing, and explosive quality on the damage pattern of concrete slabs were generalized. The results show that: increasing the fiber length can better play the role of bridging to improve the cracking resistance of concrete slabs; increasing fiber volume ratio can effectively reduce the damage of concrete slabs; the fiber length of 40 mm, volume ratio 0.5% is one of the optimal combinations to enhance the blast resistance of concrete slab.

关键词

玄武岩纤维混凝土板 / 现场试验 / 接触爆炸 / 毁伤特性 / 数值模拟

Key words

Basalt fiber reinforced concrete slab / Field test / Contact explosion / Destructive property / Numerical simulation

引用本文

导出引用
赵小华1, 3, 李亚男1, 赵浩楠1, 王高辉2, 杜雪明1, 3, 方宏远1, 3. 接触爆炸下玄武岩纤维混凝土板毁伤特性研究[J]. 振动与冲击, 2025, 44(11): 39-49
ZHAO Xiaohua1, 3, LI Yanan1, ZHAO Haonan1, WANG Gaohui2, DU Xueming1, 3, FANG Hongyuan1, 3. Damage characteristics of basalt fiber reinforced concrete slab under contact explosion[J]. Journal of Vibration and Shock, 2025, 44(11): 39-49

参考文献

[1] MUTHUKUMARANA T V, ARACHCHI M, SOMARATHNA H, et al. A review on the variation of mechanical properties of carbon fibre-reinforced concrete[J]. Construction and Building Materials, 2023, 366: 130173. 
[2] 李福海, 高浩, 唐慧琪, 等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 419-427.
LI Fuhai, GAO Hao, Tang Huiqi, et al. Basic properties and shrinkage model of chopped basalt fiber concrete [J]. Journal of Railway Science and Engineering, 2022, 19(2): 419-427.
[3] FOGLAR M, HAJEK R, KOVAR M, et al. Blast performance of RC panels with waste steel fibers[J]. Construction and Building Materials, 2015, 94: 536-546.
[4] 赵胜前, 游庆龙, 李京洲, 等. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 306-313.
ZHAO Shengqian, YOU Qinglong, LI Jingzhou, et al. Study of Toughening and Crack Resistance Effect of Modified Polyester Fiber on Airport Cement Concrete[J]. Materials Reports, 2024, 38(13): 306-313.
[5] LI F Y, GUO Z W, WU P F. Mechanical properties of steel fiber RPC , basalt fiber RPC, and hybrid fiber RPC : A review of research progress[J]. Structural Concrete, 2024: 202300481.
[6] LIU X X, WANG S X, HAN F, et al. Mechanical relationship between compressive strength and sulfate erosion depth of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2024, 411: 134412
[7] 郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5): 2897-2912.
GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2897-2912.
[8] ASPRONE D, CADONI E, IUCOLANO F, et al. Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar[J]. Cement and Concrete Composites, 2014, 53: 52-58.
[9] WANG Y J, REN Q, XU J H. Influence of Basalt Fiber on the Mechanical Properties and Deformation Failure of Concrete after High Temperature[J]. Advances in Civil Engineering, 2024(1): 6846792.
[10] 余文轩, 范美妤, 金浏, 等. 低温下玄武岩纤维混凝土劈拉强度尺寸效应试验[J]. 哈尔滨工业大学学报, 2024, 1-10.
YU Wenxuan, FAN Meiyu, JIN Liu, et al. Experimental study of size effect on splitting tensile strength of basalt fibrereinforced concrete at low temperature[J]. Journal of Harbin Institute of Technology, 2024, 1-10.
[11] 金浏, 范美妤, 余文轩, 等. 低温下玄武岩纤维混凝土压缩破坏及尺寸效应试验研究[J]. 工程力学, 2024, 1-10.
JIN Liu, FAN Meiyu, YU Wenxuan, et al. Experimental Study On Size Effect And On Compression Failure Of Basalt Fiber Reinforced Concrete At Low Temperture[J]. Engineering Mechanics, 2024, 1-10.
[12] 马钢, 高松涛, 王卓然, 等. 低速冲击下纤维混凝土梁的动力学特征与断裂耗能研究[J]. 振动与冲击, 2022, 41(8): 208-216.
MA Gang, GAO Songtao, WANG Zhuoran, et al. Dynamic characteristics and fracture energy dissipation of fiber reinforced concrete beams under low-velocity impact[J], Journal of Vibration and Shock, 2022, 41(8): 208-216.
[13] THOMAS R J, SORENSEN A D. Review of strain rate effects for UHPC in tension[J]. Construction and Building Materials, 2017, 153: 846-856. 
[14] YANG L Y, XIE H Z, FANG S Z, et al. Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression[J]. Structures, 2021, 31: 330-340. 
[15] ZHANG X T, LOU C, LYU X K. Experimental study on direct tensile fatigue performance of basalt fiber reinforced concrete[J]. Scientific Reports, 2024, 14(1): 765. 
[16] SUN X J, GAO Z, CAO P, et al. Fracture performance and numerical simulation of basalt fiber concrete using three-point bending test on notched beam[J]. Construction and Building Materials, 2019, 225: 788-800. 
[17] SUN X J, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete[J]. Construction and Building Materials, 2019, 202: 58-72.
[18] 刘靖晗, 唐廷, 韦灼彬, 等. 沉箱码头在空中和水下爆炸作用下的累积毁伤效应研究[J]. 振动与冲击, 2024, 43(12): 298-306.
LIU Jinghan, TANG Ting, WEI Zhuobin, et al. Cumulative damage effect of the caisson wharf induced by air and underwater explosions[J]. Journal of Vibration and Shock, 2024, 43(12): 298-306.
[19] 孙启鑫, 刘超. 预应力混凝土箱梁爆炸荷载模型试验及有限元分析[J]. 振动与冲击, 2024, 43(14): 37-46.
SUN Qinxin, LIU Chao. Experimental and finite element analysis of the explosion load model for prestressed concrete box girders [J]. Journal of Vibration and Shock, 2024, 43(14): 37-46.
[20] XIE H Z, YANG L Y, ZHU H N, et al. Energy dissipation and fractal characteristics of basalt fiber reinforced concrete under impact loading[J]. 2022, 46654-663.
[21] 范飞林, 叶学华, 许金余, 等. 冲击载荷下玄武岩纤维增强混凝土的动态本构关系[J]. 振动与冲击, 2010, 29(11): 110-114+256.
FAN Feilin, YE Xuehua, XU Jinyu, et al. Dynamic constitutive relation of basalt fiber reinforced concrete under impact loading[J]. Journal of Vibration and Shock, 2010, 29(11): 110-114+256.
[22] LI J H, YANG L Y, XIE H Z, et al. Research on impact toughness and crack propagation of basalt fiber reinforced concrete under SHPB splitting test[J]. Journal of Building Engineering, 2023, 77: 107445.
[23] YU X, ZHOU B K, FENG H, et al. Experimental investigation of basalt fiber-reinforced polymer (BFRP) bar reinforced concrete slabs under contact explosions[J]. International Journal of Impact Engineering, 2020, 144: 103632. 
[24] 李威, 李秀地, 芦天翊, 等. 玄武岩纤维材料抗爆抗冲击性能研究进展[J]. 塑料工业, 2019, 47(10): 11-14+64.
LI Wei, LI Xiudi, LU Tianyi, et al. Research Progress on Anti-explosion and Anti-shock Properties of Basalt Fiber Materials[J]. China Plastics Industry, 2019, 47(10): 11-14+64.
[25] 许凯, 黄艳, 鲁光涛, 等. 爆炸荷载作用下BFRC梁的压电骨料损伤评估研究[J]. 爆破, 2022, 39(4): 17-24+79.
XU Kai, HUANG Yan, LU Guangtao, et al. Damage Evaluation of BFRC Beams Under Blast Loadings Using Piezoelectric Smart Aggregates[J]. Blasting, 2022, 39(4): 17-24+79.
[26] RIEDEL W, KAWAI N, KONDO K I. Numerical assessment for impact strength measurements in concrete materials[J]. International Journal of Impact Engineering, 2009, 36(2): 283-293.
[27] 赵小华, 刘树参, 方宏远, 等. 水下接触爆炸下高聚物层对钢筋混凝土板的防护效果[J]. 爆炸与冲击, 2023, 43(12): 110-124.
ZHAO Xiaohua, LIU Shucan, FANG Hongyuan, et al. Protective effect of polymer layer on reinforced concrete slabs under an underwater contact explosion[J]. Explosion and Shock Waves, 2023, 43(12): 110-124.
[28] 陈公轻, 吴昊, 吕晋贤, 等. 爆炸荷载作用下砌体填充墙对RC框架结构损伤破坏的影响[J]. 振动与冲击, 2024, 43(03): 93-104+157.
CEHN Gongqing, WU Hao, LÜ Jinxian, et al. Effects of masonry infilled walls on damage and failure of RC frame structure under explosive load [J]. Journal of Vibration and Shock, 2024, 43(03): 93-104+157. 

PDF(4912 KB)

57

Accesses

0

Citation

Detail

段落导航
相关文章

/