基于多向多点位TMD的半潜式风机振动控制研究

孙亮明1, 2, 林道璇1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 122-129.

PDF(1860 KB)
PDF(1860 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 122-129.
振动理论与交叉研究

基于多向多点位TMD的半潜式风机振动控制研究

  • 孙亮明*1,2,林道璇1,2
作者信息 +

Research on vibration control of semisubmersible wind turbine based on multi-direction and multi-position TMD

  • SUN Liangming*1,2,LIN Daoxuan1,2
Author information +
文章历史 +

摘要

为了对半潜式风机水平向和竖向的振动进行控制,提出了多向多点位调谐质量阻尼器(tuned mass damper,TMD)的布设方式,即在机舱内布置H-TMD,平台内布置V-TMD。为研究这种TMD布设方式的减振效果,建立了半潜式风机-多向多点位TMD全耦合数值模型,利用OpenFAST仿真分析风浪联合作用下半潜式风机的动力响应。结果表明:布置多向多点位TMD的减振效果要比单点位TMD的减振效果要好,且在机舱内布置低频H-TMD,平台内布置V-TMD为最优布置方案,能够使半潜式风机纵摇、横摇、垂荡、塔架纵向振动的平均标准差控制率分别达到13.97%、32.85%、15.21%、2.86%。

Abstract

In order to control the horizontal and vertical vibrations of semisubmersible wind turbine, a multi-direction and multi-position TMD deployment method is proposed, which involves arranging H-TMD in the nacelle and V-TMD in the platform. To study the vibration reduction effect of this TMD deployment method, A fully coupled numerical model of semisubmersible wind turbine with multi-direction multi-position TMD was established, and the dynamic response of semisubmersible wind turbine under wind wave combined action was analyzed using OpenFAST simulation. The results show that the vibration reduction control effect of arranging multi-direction and multi-position TMD is better than that of single position TMD, and arranging low-frequency H-TMD in the nacelle and V-TMD in the platform is the optimal arrangement scheme, which can achieve average standard deviation control rates of 13.97%, 32.85%, 15.21%, and 2.86% for pitch, roll, heave, and tower longitudinal vibration of semisubmersible wind turbine.

关键词

振动控制 / 半潜式风机 / 调谐质量阻尼器 / 动力分析

Key words

vibration control / semisubmersible wind turbine / tuned mass damper / dynamic analysis 

引用本文

导出引用
孙亮明1, 2, 林道璇1, 2. 基于多向多点位TMD的半潜式风机振动控制研究[J]. 振动与冲击, 2025, 44(12): 122-129
SUN Liangming1, 2, LIN Daoxuan1, 2. Research on vibration control of semisubmersible wind turbine based on multi-direction and multi-position TMD[J]. Journal of Vibration and Shock, 2025, 44(12): 122-129

参考文献

[1] 刘周, 樊天慧, 陈超核, 等. 3种典型半潜式浮式风机基础水动力性能比较[J]. 中国海洋平台, 2021, 36(2) : 1-10.
LIU Zhou, FAN Tianhui, CHEN Chaohe,et al. Comparsion on Hydrodynamic Performance of Three Kinds of Typical Semi-Submersible Floating Foundations of Offshore Wind Turbine[J]. China Offshore Platform, 2021, 36(2) : 1-10.
[2] 温斌荣, 田新亮, 李占伟,等. 大型漂浮式风电装备耦合动力学研究:历史、进展与挑战[J]. 力学进展, 2022, 52(4):731-808.
WEN Binrong, TIAN Xinliang, LI Zhanwei, et al. Coupling dynamics of floating wind turbines: History, progress and challenges[J]. Advances in Mechanics, 2022, 52(4): 731-808.
[3] LACKNER M, ROTEA M. Passive Structural Control of Offshore Wind Turbines[J]. Wind Energy, 2011, 14(3) : 373-388.
[4] SI Y, KARIMI H R, GAO H. Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering Structures, 2014, 69(9) : 168-182.
[5] YANG J, HE E. Coupled modeling and structural vibration control for floating offshore wind turbine[J]. Renewable Energy, 2020, 157 : 678-694.
[6] 罗一帆, 孙洪鑫, 王修勇, 等. 风浪联合作用下分布式调谐质量阻尼器对海上半潜漂浮式风机的减振控制[J]. 振动工程学报, 2024, 37(04) : 565-577.
LUO Yifan, SUN Hongxin, WANG Xiuyong, et al. Vibration reduction control of a semisubmersible floating offshore wind turbine by the distributed tuned mass dampers under combined wind and wave excitations[J]. Journal of Vibration Engineering, 2024, 37(04) : 565-577.
[7] 李万润, 杨州, 杜永峰. 一种新型风电塔架结构用双向TMD风致响应减振控制研究[J]. 振动与冲击, 2021, 40(12) : 114-123.
LI Wanrun, YANG Zhou, DU Yongfeng. Wind induced vibration of wind turbine structures with a new bi-directional TMD[J]. Journal of Vibration and Shock, 2021, 40(12) : 114-123.
[8] SUN C, JAHANGIRI V. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper[J]. Mechanical System and Signal Processing, 2018, 105: 338-360.
[9] JAHANGIRI V, SUN C. Three-dimensional vibration control of offshore floating wind turbines using multiple tuned mass dampers[J]. Ocean Engineering, 2020, 206: 107196.
[10] 陈玲霜, 李书进, 孔凡. 风浪联合作用下驳船型海上浮式风机的PTMD减振控制[J]. 武汉理工大学学报, 2023, 45(08): 88-94.
CHEN Lingshuang, LI Shujin, Kong Fan. Pounding tuned mass damper for vibration control of barge-type floating offshore wind turbine subjected to combined wind and wave excitations[J]. Journal of Wuhan University of Technology, 2023, 45(8) : 88-94.
[11] 白久林, 李晨辉, 王宇航. 考虑RNA运行作用的近海风电结构主动质量阻尼器振动控制研究[J]. 振动与冲击, 2023, 42(23):183-191.
BAI Jiulin, LI Chenhui, WANG Yuhang. Active mass damper vibration control of offshore wind turbine structure consider-ing RNA operation[J]. Journal of Vibration and Shock, 2023,42(23):183-191.
[12] 白久林, 李晨辉, 王宇航. 考虑RNA运行作用的近海风电结构TMD振动控制研究[J]. 太阳能学报, 2023, 44(8):524-534.
BAI Jiulin, LI Chenhui, WANG Yuhang. Research on TMD vibration control of offshore wind turbine considering RNA operation[J]. Acta Energiae Solaris Sinica, 2023, 44(8): 524-534.
[13] 畅通, 彭勇波. 风浪联合作用下浮式风机-TMDI系统振动控制[J/OL].振动工程学报.http://kns.cnki.net/kcms/detail/32.1349.TB.20240229.1150.002.html.
CHANG Tong, PENG Yongbo.  Vibration control of FOWT-TMDI system under joint wind-wave loads[J]. Journal of Vib-ration Engineering. http://kns.cnki.net/kcms/detail/32.1349.TB.20240229.1150.002.html.
[14] LEI Z, LIU G, YANG Q,et al. Experimental investigati-on on vibration suppression of a new prestressed TMD for wind turbine towers[J]. Thin-Walled Structures,  2024, 202:112080.
[15] GAO Y, ZHAI E, LI S, et al. Integrated design and real-world application of a tuned mass damper (TMD) with displacement constraints for large offshore monopile wind turbines[J]. Ocean Engineering, 2024, 292:116568.
[16] JONKMAN J M. Dynamics modeling and loads analysis of an offshore floating wind turbine[D]. Colorado: University of Colorado at Boulder, 2007.
[17] ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the Semisubmersible Floating System for Phase Ⅱof OC4[R]. Colorado : National Renewable Energy Laboratory, 2014.
[18] TRAN T T, KIM D H. Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach[J]. Renewable Energy, 2016, 92 :224-261 .
[19] LI T, LIU Z, LIU S, et al. Numerical study on passive structural control of semi-submersible floating wind turbine considering non-collinear wind and waves[J]. Ocean Engineering, 2022, 266 : 112745.
[20] 韩东东, 王文华, 李昕. 随机风浪作用下漂浮式风力机MTMD振动控制研究[J]. 太阳能学报, 2022, 43(12) : 257-264.
HAN Dongdong, WANG Wenhua, LI Xin. Vibration control of floating offshore wind turbine under stochastic wind and wave loads using multiple tuned mass damper[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 257-264.
[21] HEMMATI A, OTERKUS E, KHORASANCHI M. Vibration suppression of offshore wind turbine foundations using tuned liquid column dampers and tuned mass dampers[J]. Ocean Engineering, 2019, 172 : 286-295.

PDF(1860 KB)

Accesses

Citation

Detail

段落导航
相关文章

/