多椭圆孔硬涂层薄壁圆柱壳的动力学建模及分析

胡云彤1, 杨俊学2, 张月1, 魏德正1, 杨建1

振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 141-149.

PDF(2716 KB)
PDF(2716 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 141-149.
振动理论与交叉研究

多椭圆孔硬涂层薄壁圆柱壳的动力学建模及分析

  • 胡云彤1,杨俊学2,张月1,魏德正1,杨建*1
作者信息 +

Dynamic modeling and analysis of hard-coated thin-walled cylindrical shells with multiple elliptical perforations

  • HU Yuntong1,YANG Junxue2,ZHANG Yue1,WEI Dezheng1,YANG Jian*1
Author information +
文章历史 +

摘要

针对多椭圆孔薄壁圆柱壳复合结构的动力学问题,本文提出了一种基于能量叠加原理的半解析建模方法。并结合Rayleigh-Ritz法、Love第一近似理论和第二类Chebyshev多项式,建立了多椭圆孔硬涂层薄壁圆柱壳复合结构自由振动的半解析模型。与实验固有频率的对比结果验证了该半解析模型的正确性和合理性。在此基础上,着重分析了开孔方案(包括轴长参数、轴向和周向开孔数)对结构振动与阻尼特性的影响规律。结果显示,与不开孔相比,开孔会导致固有频率下降,随着轴向开孔数的增加,固有频率呈现先下降后上升的趋势;随着椭圆轴长的增加,结构固有频率不断下降,且轴向开孔数越大,频率下降幅度越大;随着周向开孔数的增加,结构固有频率和模态损耗因子也均呈现出明显的下降趋势;但当周向均布孔数与周向波数成2倍关系时,结构固有频率均逐渐升高,模态损耗因子达到峰值。

Abstract

Regarding the dynamic problems of composite thin-walled cylindrical shells with multiple elliptical perforations, this paper proposes a semi-analytical modeling method based on the energy superimposition. Combined with the Rayleigh-Ritz method, Love's first approximation theory and second kind of Chebyshev polynomials, a semi-analytical model for free vibration of the hard-coated thin-walled cylindrical shells with multiple elliptical perforations uniformly distributed in the circumferential direction is established. The comparison between the calculated and experimental natural frequencies verifies the correctness and rationality of the semi-analytical model. On this basis, the influences of elliptical perforation schemes (including the axial length, axial and circumferential perforation numbers) on vibration and damping characteristics of the shell are analyzed emphatically. The results show that the perforations would first lead to a reduction in natural frequencies compared to non-perforated structures. As the axial perforation number increases, the natural frequencies show a trend of first decreasing and then increasing. As the length of the elliptical axis increases, the natural frequency of the shell continuously decreases, and the larger the axial perforations, the greater the frequency reduction. As the circumferential perforation number increases, the natural frequencies and modal loss factor of the shell also show a significant downward trend. However, when the circumferential perforation number is twice that of the circumferential wave, the natural frequencies gradually increase as well as the modal loss factor reaches its peak.

关键词

圆柱壳 / 硬涂层 / 多椭圆孔 / 能量叠加 / 半解析

Key words

cylindrical shell / hard-coated / multiple elliptical circular perforations / energy superposition / semi-analytical

引用本文

导出引用
胡云彤1, 杨俊学2, 张月1, 魏德正1, 杨建1. 多椭圆孔硬涂层薄壁圆柱壳的动力学建模及分析[J]. 振动与冲击, 2025, 44(12): 141-149
HU Yuntong1, YANG Junxue2, ZHANG Yue1, WEI Dezheng1, YANG Jian1. Dynamic modeling and analysis of hard-coated thin-walled cylindrical shells with multiple elliptical perforations[J]. Journal of Vibration and Shock, 2025, 44(12): 141-149

参考文献

[1] 张磊, 曹跃云, 杨自春, 等. 水下圆柱壳体结构噪声 的工况传递路径分析[J]. 振动、测试与诊断, 2012, 32(6): 897-902.
ZHANG lei, CAO yueyun, YANG zichun, et al. Structure-borne noise of submerged cylindrical shell based on operational transfer path analysis[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(6): 897-902.
[2] 乔丕忠, 王艳丽, 陆林军. 圆柱壳稳定性问题的研究 进展[J]. 力学季刊, 2018, 39(2): 223-236.
QIAO Pizhong, WANG Yanli, LU Linjun. Advances in stability of cylindrical shells[J]. Chinese Quarterly of Mechanics, 2018, 39(2): 223-236.
[3] 王喜梦, 经慧祥, 李治涛, 等. 薄壁圆柱壳体结构在 非对称周向载荷下响应分析[J]. 舰船科学技术, 2022, 44(14): 21-25.
WANG Mengxi, JING Huixiang, LI Zhitao, et al. Response analysis of thin-walled cylindrical shell structure under asymmetrical circumferential load[J]. Ship Science and Technology, 2022, 44(14): 21-25.
[4] GAO F, SUN W, GAO J N. Forced vibration analysis ofthe hard-coating blisk considering the strain-dependentmanner of the hard-coating damper[J]. Aerospace Science and Technology, 2018, 79: 187-198.
[5] SONG X Y, REN H J, WANG X P, et al. High-order vibration characteristics of rotating thin shells and hard-coating damping effects[J]. Journal of Physics Conference, 2013, 448(1): 1742-6596.
[6] 马宏伟, 陈中石, 孙伟. 考虑层间变形的约束阻尼圆 柱壳振动特性分析[J]. 振动、测试与诊断, 2023, 43 (5): 1004-6801.
MA Hongwei, CHEN Zhongshi, SUN Wei. Vibration characteristics analysis of constrained damped cylindrical shell considering interlayer deformation[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(5): 1004-6801.
[7] LV C Z, SONG H, FAN D, et al. Research on opening holes in cylindrical shell based on ANSYS simulation[J]. Applied Mechanics & Materials, 2015, 740: 127-130.
[8] 张丕辛, 黄克智, 陆明万. 圆柱壳开孔的应力分析[J]. 力学学报, 1991, (6): 700-705.
ZHANG Pixin, HUANG Kezhi, LU Mingwan. The stress analysis of cylindrical shells with cutouts[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, (6): 700-705.
[9] Amabili M. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach[J]. Journal of Sound & Vibration, 2003. 264(5): 1091-1125.
[10] 杨建, 张月, 宋华. 非均布约束刚度下硬涂层圆柱壳自由振动的半解析建模及分析[J]. 振动与冲击, 2023, 42(20): 280-285.
YANG Jian, ZHANG Yue, SONG Hua. Semi-analytical modeling and analysis of free vibration of hard-coated cylindrical shell under heterogeneous constrained stiffness[J]. Journal of Vibration and shock, 2023, 42(20): 280-285.
[11] 江晨半, 王献忠, 左营营. 基于精细传递矩阵法的变厚度圆柱壳自由振动分析[J]. 振动与冲击, 2020, 39(3): 134-141.
JIANG Chenban, WANG Xianzhong, ZUO Yingying. Free vibration analysis for cylindrical shells with variable thinkness based on precise transfer matrix method[J]. Journal of Vibration and Shock, 2020, 39(3): 134-141.
[12] Levchuk S A, Khmel'Nyts'Kyi A A. The use of one of the potential theory methods to study the static deformation of composite cylindrical shells[J]. Strength of Materials, 2021, 53(2): 258-264.
[13] LI H, SUN W, ZHU M W, et al. Experimental study on the influence on vibration characteristics of thin cylindrical shell with hard coating under cantilever boundary condition[J]. Shock and Vibration, 2017, 2017(1): 1751870.
[14] ZHANG Y, YANG J, SONG H, et al. Performance evaluation for the domain decomposition method in nonlinear vibration of the composite hard-coating cylindrical shell[J]. Science Progress, 2023, 106(1): 1-22.
[15] YANG J, SONG H, CHEN D, et al. Free vibration and damping analysis of the cylindrical shell partially covered with equidistant multi-ring hard coating based on a unified Jacobi-Ritz method[J]. Science Progress, 2021, 104(3): 1-21.
[16] DU D X, SUN W, YAN X F, et al. Nonlinear vibration analysis of the rotating hard-coating cylindrical shell based on the domain decomposition method[J]. Thin-Walled Structures, 2020, 159(3): 107236.
[17] 张锦岚, 刘勇, 李铭. 加筋圆柱壳开孔结构强度分析[J]. 舰船科学技术, 2017, 39(1): 12-16.
ZHANG Jinlan, LIU Yong, LI Ming. Strength analysis of stiffened cylindrical shell with a circular opening[J]. Ship Science and Technology, 2017, 39(1): 12-16.
[18] 魏德正, 杨建, 张月. 开孔硬涂层薄壁圆柱壳复合结构的半解析建模及振动特性分析[J]. 振动与冲击, 2024, 43(11): 58-65.
WEI Dezheng, YANG Jian, ZHANG Yue. Semi-analytical modeling and vibration characteristic analysis of the thin-walled hard-coating cylindrical shell composite structure with circular perforation[J]. Journal of Vibration and Shock, 2024, 43(11): 58-65.
[19] 朱明伟. 硬涂层圆柱壳振动特性测试与分析[D]. 沈阳: 东北大学, 2019.
[20] WANG S Y. Some new identities of Chebyshev polynomials and their applications[J]. Advances in Difference Equations, 2015, 2015(1): 355.
[21] SUN W, ZHU M W, WANG Z. Free vibration analysis of a hard-coating cantilever cylindrical shell with elastic constraints[J]. Aerospace Science and Technology, 2017, 63: 232-244.
[22] ZHANG Y, SONG H, YU X G, et al. Modeling and analysis of forced vibration of the thin-walled cylindrical shell with arbitrary multi-ring hard coating under elastic constraint[J]. Thin-Walled Structures, 2022, 173: 109037.
[23] Pini V, Ruz J J, Kosaka P M, et al. How two-dimensional bending can extraordinarily stiffen thin sheets[J]. Scientific reports, 2016, 6(1): 29627.

PDF(2716 KB)

Accesses

Citation

Detail

段落导航
相关文章

/