三维阶梯海床上系泊浮体运动响应及所受系泊力的数值研究

张龙飞, 廖斌, 姚乐, 陈善群

振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 162-175.

PDF(7979 KB)
PDF(7979 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 162-175.
振动理论与交叉研究

三维阶梯海床上系泊浮体运动响应及所受系泊力的数值研究

  • 张龙飞,廖斌*,姚乐,陈善群
作者信息 +

Numerical study on motion responses and mooring forces of moored floating bodies on athree-dimensional stepped seabed

  • ZHANG Longfei,LIAO Bin*,YAO Le,CHEN Shanqun
Author information +
文章历史 +

摘要

采用光滑粒子流体动力学(Smoothed Particle Hydrodynamics,SPH)方法结合MoorDyn动态系泊缆绳数值模型建立了研究波浪驱动下三维阶梯海床上系泊浮体运动响应及所受系泊力的计算模型。通过实验数据验证对比其适用性与精确度的基础上,系统研究了Keulegan–Carpenter数(KC数)、周期T、浮体之间间距d以及海床阶梯高度h对阶梯海床上游及下游系泊浮体(系泊浮体I和II)运动响应及所受系泊力的影响规律。结果表明:KC数对系泊浮体I和II的运动响应及所受系泊力均有一定的激励作用;随着T的增大,系泊浮体I和II运动响应相位均发生明显偏移,两浮体所受系泊力幅值有一定增大趋势; d对系泊浮体I和II运动响应的影响较小,不同d条件下两浮体所受系泊力幅值对应的相位出现明显偏移;随着h的增大,系泊浮体I的运动响应有一定程度的减弱而系泊浮体II的运动响应有一定程度的增强,两系泊浮体所受系泊力幅值呈现类似的趋势;去除系泊浮体I后,系泊浮体II运动响应有一定程度的增加。

Abstract

In this paper, by using the Smoothed Particle Hydrodynamics (SPH) method combined with the MoorDyn dynamic mooring cable numerical model, a computational model to study the motion responses and mooring forces of moored floating bodies on the three-dimensional stepped seabed under wave-driven conditions had been developed. We used the experimental data to verify and compare its applicability and accuracy. Further, the effects of the Kollagan-Carpenter number (KC number), the period T, the spacing between floating bodies d, and the seabed height h on the motion responses and mooring forces of the moored floating bodies which are located at the upstream and downstream of the stepped seabed (moored floating bodies I and II, respectively) are systematically investigated. It was found that the KC number has a motivational effect on the motion response and mooring forces of moored floating bodies I and II. As T increases, the motion response phases of moored floating bodies I and II are significantly shifted, and the amplitude of the mooring forces on the two floating bodies has a tendency to increase. The effect of d on the motion responses of moored floating bodies I and II is small, and the phases corresponding to the amplitude of the mooring forces on the two floating bodies under different d show significant shifts. As h increases, the motion response of the moored floating body I is weakened while the motion response of the moored body II is enhanced, and the amplitude of the mooring forces on the two moored floating bodies shows a similar trend. The removal of the moored floating body I resulted in intensification of the moored floating body II motion response.

关键词

系泊浮体 / SPH方法 / MoorDyn数值模型 / 运动响应 / 系泊力

Key words

Moored floating body / SPH method / MoorDyn numerical model / Motion response / Mooring force

引用本文

导出引用
张龙飞, 廖斌, 姚乐, 陈善群. 三维阶梯海床上系泊浮体运动响应及所受系泊力的数值研究[J]. 振动与冲击, 2025, 44(12): 162-175
ZHANG Longfei, LIAO Bin, YAO Le, CHEN Shanqun. Numerical study on motion responses and mooring forces of moored floating bodies on athree-dimensional stepped seabed[J]. Journal of Vibration and Shock, 2025, 44(12): 162-175

参考文献

[1] 田甜甜, 张健, 吴磊. 海上石油企业两点系泊作业案例分析及方案优化[J]. 现代企业, 2024, (07): 117–119.
Tian Tiantian, Zhang Jian, Wu Lei. Case Analysis and Optimization of Two–Point Mooring Operations in Offshore Oil Enterprises [J]. Modern Enterprise, 2024, (07): 117–119.
[2] 王瑾, 杨献鹏, 孙华斌, 等. 系泊船舶动力响应特性试验研究[J]. 船舶工程, 2024, 46(01): 58–64+78.
Wang Jin, Yang Xianpeng, Sun Huabin, et al. Experimental Study on the Dynamic Response Characteristics of Moored Vessels [J]. Ship Engineering, 2024, 46(01): 58–64+78.
[3] 孙琦, 陈迪郁, 骆钊. 深水中长周期波浪下打桩船动力响应研究及系泊系统优化[J]. 中国港湾建设, 2023, 43(05): 25–29+56.
Sun Qi, Chen Diyi, Luo Zhao. Study on Dynamic Response of Pile Driving Vessels and Optimization of Mooring System under Long–Period Waves in Deep Water [J]. China Harbour Engineering, 2023, 43(05): 25–29+56.
[4] 由遥巍, 肖肯. 半潜驳海上作业系泊系统设计分析[J]. 中国水运(下半月), 2024, 24(08): 7–8.
You Yaowei, Xiao Ken. Design and Analysis of Mooring System for Offshore Operations of Semi-Submersible Barges [J]. China Water Transport (Second Half of the Month), 2024, 24(08): 7–8.
[5] Zhang L, Samuel D, Peter S. System identification and generalisation of elastic mooring line forces on a multi-float wave energy converter platform in steep irregular waves[J]. Mechanical Systems and Signal Processing, 2024, 214: 111259.
[6] 袁培银, 赵宇, 郭建廷, 等. 多浮体式系泊系统设计及水动力性能分析[J]. 舰船科学技术, 2016, 38(03): 80–84.
Yuan Peiyin, Zhao Yu, Guo Jianting, et al. Design and Hydrodynamic Performance Analysis of multi-floating mooring system [J]. Ship Science and Technology, 2016, 38(03): 80–84.
[7] 徐剑峰. 浅水斜底地形下超大型浮体单模块系泊系统研究[D]. 上海交通大学, 2020.
Xu Jianfeng. Research on Single module Mooring system of very large floating body in shallow water with sloping bottom [D]. Shanghai Jiao Tong University, 2020.
[8] 张新福, 吴立洋, 郭奎. 两船并靠状态下的运动响应数值模拟[J]. 船舶工程, 2020, 42(11): 54–57.
Zhang Xinfu, Wu Liyang, Guo Kui. Numerical simulation of motion response of two ships in parallel [J]. Ship Engineering, 2020, 42(11): 54–57.
[9] 陈善群, 张龙珠, 廖斌. 波浪驱动下箱式浮体运动响应及受力的数值研究[J]. 长江科学院院报, 2022, 39(03): 73–79.
Chen Shanqun, Zhang Longzhu, Liao Bin, Numerical study on the motion response and forces acting on a box-type floating body under Wave-Driven conditions [J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(03): 73–79.
[10] Guo W J, Zou J B, He M, et al. Comparison of hydrodynamic performance of floating breakwater with taut, slack, and hybrid mooring systems: An SPH-based preliminary investigation[J]. Ocean Engineering, 2022, 258: 111818.
[11] Zhao C Y, Peter S, Lars J, OrcaFlex predictions for a multi-float hinged WEC with nonlinear mooring systems: Elastic mooring force and dynamic motion [J]. Ocean Engineering, 2023, 286: 115504.
[12] Takaya N, Hideyuki S, Hidetaka H, et al. Experimental and numerical studies on regular wave responses of a very-light FOWT with a guy-wired-supported tower: Effects of wave height, wave direction, and mooring line configuration [J]. Ocean Engineering, 2024, 295: 116844.
[13] Zou L, Zhao Z M, Sun J Z, et al. Numerical analysis of hydrodynamic characteristics in mooring platforms with diverse moonpool shapes using SPH [J]. Ocean Engineering, 2024, 297: 117037. 
[14] Huang S, Sheng S W, Arnaud G, et al. Numerical design study of multipoint mooring systems for the floating wave energy converter in deep water with a sloping bottom, Renewable Energy, 2019, 136: 558–571.
[15] Li Z Q, Teng B, Gou Y. Two-dimensional diffraction and radiation problems of a floating body in varying bathymetry [J], Applied Ocean Research, 2024, 250: 104103.
[16] Peng W, Kwang–Ho L, Seung–Ho S, et al. Numerical simulation of interactions between water waves and inclined-moored submerged floating breakwaters, Coastal Engineering, 2013, 82: 76–87.
[17] 杨岑, 张永良. 浮子式波浪能转换器运行特性的试验研究[J]. 水力发电学报, 2016, 35(07): 120–126.
Yang Cen, Zhang Yongliang. Experimental study on the operational characteristics of a Buoy-Type wave energy converter[J]. Journal of Hydroelectric Engineering, 2016, 35(07): 120–126.
[18] 李卫. 基于核方法的模糊模型辨识研究[D]. 上海: 上海交通大学, 2009.
Li Wei. Research on fuzzy model identification based on kernel method[D]. Shanghai: Shanghai Jiao Tong University, 2009.
[19] 刘晓曦. 基于改进核函数的SPH方法及其数值模拟[D]. 哈尔滨:哈尔滨工程大学, 2023.
Liu Xiaoxi. SPH method based on Improved Kernel Function and its numerical Simulation [D]. Harbin Engineering University, 2023.
[20] 项韦杰. 浮式海上平台系统的建模与控制研究[D]. 北京: 北京科技大学, 2023.
Xiang Weijie. Modeling and control research on floating offshore platform systems [D]. Beijing: University of Science and Technology Beijing, 2023.
[21] Sarpkaya T. Wave Forces on Offshore Structures[M]. London: Cambridge University Press, 2010.
[22] Wu M H, Stratigaki V, Verbrugghe T, et al. Experimental study of motion and mooring behavior of floating oscillating water column wave energy converter[C]. Proceedings of the COASTLAB, Santander, Spain, 2018.
[23] Crespo A J C, Altomare C, Domínguez J M, et al. Towards simulating floating offshore oscillating water column converters with smoothed particle hydrodynamics[J]. Coastal Engineering, 2017, 126: 11–26.
[24] 杨亚菲, 蔡国朕, 曹露, 等. 规则波与浮式防波堤相互作用的SPH模拟研究[J]. 水运工程, 2024, (02): 9-15+21.
Yang Yafei, CAI Guozhen, Cao Lu, et al. SPH simulation of interaction between regular wave and floating breakwater [J]. Water Transport Engineering, 2024, (02): 9-15+21.
[25] 严明宇, 马小舟, 郑振钧, 等. 中长周期波作用下系泊集装箱船水动力响应数值模拟[J]. 水运工程, 2024,(07): 11-17.
YAN Mingyu, MA Xiaozhou, ZHENG Zhenjun, et al. Numerical simulation of the hydrodynamic response of moored container ships under medium and long period waves[J]. Water Transport Engineering, 2024, (07): 11-17.
[26] 曹洁, 陈海山, XU Qin. 近70年有限区域流函数速度势算法研究的回顾和新进展[J]. 大气科学, 2023, 47(02): 502-516.
Cao Jie, Chen Haishan, XU Qin. Review and New progress of velocity potential algorithm of finite region flow function in recent 70 years [J]. Chinese Journal of Atmospheric Sciences, 2019, 47(02): 502-516.
[27] 毛鸿飞, 韩龙, 赫岩莉, 等.潜堤坡度对波浪传播变形的影响[J]. 河海大学学报(自然科学版), 2024, 52(05): 76-84.
Mao Hongfei, Han Long, He Yanli, et al. Effect of slope of submerged embankment on wave propagation deformation [J]. Journal of Hohai University (Natural Science Edition), 2024, 52(05): 76-84.
[28] 武煜杰. 新型物探船浅水特性研究[D]. 大连海事大学, 2023.
Wu Yujie. Research on shallow water characteristics of New geophysical exploration Ship [D]. Dalian Maritime University, 2023.
[29] Xie J J, Xiong W, Liu H W. Bragg reflection of linear shallow-water waves by an array of widely spaced trapezoidal bars on a fringing reef flat[J]. Ocean Engineering, 2024, 292: 116593.
[30] 尤云祥, 缪国平, 程建生, 等. 两层流体中水波在垂直薄板上的反射与透射[J]. 力学学报, 2005, (05): 529-541.
YOU Yunxiang, Miao Guoping, CHENG Jiansheng, et al. Reflection and Transmission of Water Waves on Vertical Thin Plate in Two Layers of Fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, (05): 529-541. 

PDF(7979 KB)

Accesses

Citation

Detail

段落导航
相关文章

/