飞机上冲压空气涡轮(Ram Air Turbine, 简称RAT)的工作环境具有风速、飞行高度和温度上的随机性,需在诸多工况下都保持稳定运行。该研究对来流空气作用下的冲压空气涡轮调速系统进行了控制学建模,基于此模型开展多种工况下的稳定性分析。首先,根据涡轮工作原理,针对某型RAT的调速系统建立了能够反映涡轮真实响应的动力学模型;然后,将调速系统在转速平衡状态附近做线性近似处理,得到能够描述调速系统在负载扰动下稳定性的闭环控制模型,结合动力学模型的仿真结果和控制学模型的理论计算,分析了涡轮在负载冲击下的响应特性;最后,对调速系统进行稳定性评估,系统地研究了调速系统在不同工作环境中的稳定性规律。数值仿真结果表明:所建立的闭环控制模型能准确反映RAT调速系统的稳定性程度,在风速大、飞行高度低的工况中该系统稳定程度最薄弱。
Abstract
The operational environment of the Ram Air Turbine (RAT) on aircraft is characterized by randomness in wind speed, flight altitude, and temperature, necessitating stable operation across diverse working conditions. A control model is established for the RAT speed control system under the influence of incoming air, and stability analysis is conducted under various operating conditions. Initially, based on turbine operating principles, a dynamic model is formulated for the speed control system of a RAT, capable of reflecting the true response of the turbine. Subsequently, the speed control system is approximated linearly near the speed equilibrium state to derive a closed-loop control model that can describe system stability under load disturbance. By combining the simulation results of the dynamic model with the theoretical calculations of the control model, the response characteristics of the turbine under load impact are analyzed. Ultimately, the stability of the speed control system is evaluated, and the stability laws of the speed control system in different operational environments are systematically investigated. The numerical simulation results indicate that the closed-loop control model accurately reflects the stability of the RAT speed control system, with system stability being weakest in operational conditions of high wind speed and low flight altitude.
关键词
冲压空气涡轮 /
调速系统 /
结构动力学建模 /
闭环控制系统 /
稳定性分析
{{custom_keyword}} /
Key words
Ram Air Turbine /
speed control system /
structural dynamic modeling /
closed-loop control system /
stability analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 夏天翔, 卢岳良, 柯兵. 冲压空气涡轮系统结构协同优化[J].南京航空航天大学学报, 2021, 53(04): 583-590.
Xia Tianxiang, Lu Yueliang, Ke Bing. Collaborative Optimization of Ram Air Turbine System Structures[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(04): 583-590.
[2] 马智勇, 邓健, 周光明. 冲压空气涡轮释放过程运动学分析[J]. 南京航空航天大学学报, 2020, 52(03): 499-506.
Ma Zhiyong, Deng Jian, Zhou Guangming. Releasing Kinematics Analysis of Ram Air Turbine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(03): 499-506.
[3] Roslan S, Rasid A Z, Toh H, et al. Aerodynamic Performances of Small Scale Horizontal Axis Wind Turbine Blades for Applications in Malaysia[J]. International Journal of Recent Technology and Engineering (IJRTE), 2019, 8(4): 9557-9562.
[4] Hady A, Fabien B, Fabien B, et al. Aerodynamic Performance Enhancement of an Axisymmetric Deflector Applied to Savonius Wind Turbine Using Novel Transient 3D CFD Simulation Techniques[J]. Energies, 2023, 16(2).
[5] Vera B A M, Pérez O A, Romero D E, et al. Numerical analysis of aerodynamic performance of the Ram Air Turbine in an aircraft[J]. Heliyon, 2024, 10(11).
[6] Magedi Moh M S, Sofian M, Fadhli M Z, et al. CFD Simulation Study on the Performance of a Modified Ram Air Turbine (RAT) for Power Generation in Aircrafts[J]. Fluids, 2021, 6(11).
[7] Zamani, Hassan M, Riahy, et al. Rotor-Speed Stability Improvement of Dual Stator-Winding Induction Generator-Based Wind Farms By Control-Windings Voltage Oriented Control[J]. IEEE Transactions on Power Electronics, 2016, 31(8): 5538-5546.
[8] Yao S, Liu Q, Cui H, et al. An improved method for evaluating the rotational speed stability of a hydro-viscous clutch in mixed lubrication[J]. Friction, 2015, 3(1): 47-55.
[9] Mota D A, Mota T L. A Simple Algorithm to Assess the Speed Stability of Induction Generators[J]. Journal of Computer Science, 2011, 7(6): 823-831.
[10] Xu Y, Gu Z, Sun K, et al. Understanding a Type of Forced Oscillation Caused by Steam-turbine Governors[J]. IEEE Transactions on Energy Conversion, 2020, PP(99).
[11] Tan X, Li C, Liu D, et al. Stability analysis and singular perturbation model reduction of DFIG-based variable-speed pumped storage unit adopting the fast speed control strategy[J]. Journal of Energy Storage, 2024.
[12] 程庆澜, 姜炳洲. 柴油机调速系统动态特性计算和分析[J].内燃机学报, 1989, (01): 39-44.
Cheng Qinglan, Jiang Bingzhou. Modelling for Transient Behavior of Diesel Engine Governor System[J]. Chinese Internal Combustion Engine Engineering, 1989, (01): 39-44.
[13] 李伟华, 冯学东. 柴油机调速系统动态调节过程的模拟计算与研究[J]. 小型内燃机, 1999, (02): 39-42.
Li Weihua, Feng Xuedong. A Simulative Study on Dynamic Regulating Process of Governing System for Diesel Engines[J]. Small Internal Combustion Engine, 1999, (02): 39-42.
[14] 何万祥, 王树奎, 胡建伟. 飞球式离心调速器动态特性的研究[J]. 内燃机工程, 1981, (03): 29-41.
He Wanxiang, Wang Shukui, Hu Jianwei. A Study on the Dynamic Behaviour of a Flying Ball Centrifugal Type Governor[J]. Chinese Internal Combustion Engine Engineering, 1981, (03): 29-41.
[15] Shuning D, Jinchen J, Shan Y, et al. Multistability in the Centrifugal Governor System Under a Time-Delay Control Strategy[J]. Journal of Computational and Nonlinear Dynamics, 2019, 14(11):
[16] Pappalardo M C, Lettieri A, Guida D. Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints[J]. Archive of Applied Mechanics, 2020, 90(9).
[17] 周兰午. 风力机离心调速系统特性分析[J]. 河北机电学院学报, 1990, (01): 1-7.
Zhou Lanwu. Analysis of the Stability of a Centrifugal Regulator for Windmills[J]. HEBEI JIDIAN XUEYUAN XUEBAO, 1990, (01): 1-7.
[18] 杜鑫, 柯兵, 刘诚, 等. 基于AMESim的液压模式冲压空气涡轮系统仿真研究[J]. 液压与气动, 2023, 47(04): 175-182.
Du Xin, Ke Bing, Liu Cheng, et al. Simulation of Hydraulic Ram Air Turbine Based on AMESim[J]. Chinese Hydraulics & Pneumatics, 2023, 47(04): 175-182.
[19] 夏天翔, 卢岳良, 柯兵. 飞机冲压空气涡轮系统的动态特性分析[J]. 航空学报, 2020, 41(03): 314-324.
Xia Tianxiang, Lu Yueliang, Ke Bing. Analysis of dynamic behavior of aircraft ram air turbine system[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3).
[20] 杜鑫, 卢岳良, 翟笑天, 等. 基于虚拟样机技术的冲压空气涡轮仿真研究[J]. 机械设计与制造, 2020, (04): 75-78+82.
Du Xin, Lu Yueliang, Zhai Xiaotian, et al. Simulation of Ram Air Turbine Based on Virtual Prototype Technology[J]. Machinery Design & Manufacture, 2020, (04): 75-78+82
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}