近壁弹性圆柱多模态涡激振动响应及尾流模式

杜牧远, 张志猛, 及春宁, 黄韬霖

振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 27-36.

PDF(2664 KB)
PDF(2664 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 27-36.
振动理论与交叉研究

近壁弹性圆柱多模态涡激振动响应及尾流模式

  • 杜牧远,张志猛*,及春宁,黄韬霖
作者信息 +

Multi-mode vortex-induced vibration response and wake mode of a flexible cylinder near the wall

  • DU Muyuan,ZHANG Zhimeng*,JI Chunning,HUANG Taolin
Author information +
文章历史 +

摘要

采用基于嵌入式迭代的浸入边界法对雷诺数Re=300下两端铰接近壁弹性圆柱的涡激振动进行了三维直接数值模拟研究。圆柱的长细比L /D = 25,间隙比G/D为0.6~1.6,分别对应圆柱完全被边界层覆盖、半浸没于边界层以及完全处于边界层之外。研究发现:在单模态振动情况下,G/D = 0.6和1.1时近壁弹性圆柱的振动和升、阻力系数均表现为单一频率主导,在G/D = 1.6时固有频率附近出现双频分量。多模态下,由于多阶振型的激发和叠加,圆柱振幅和升、阻力系数均表现出行波的时空分布特性。壁面边界层的向上卷起并与圆柱上侧脱涡的融合以及边界层对下侧脱涡的抑制是造成圆柱上下两侧脱涡不对称的主要原因。随着间隙比的增加,脱涡抑制的作用减弱,尾流表现为‘1S’,弱‘2S’和‘2S’的脱涡模式。多模态振动及其升、阻力的频谱具有多频特性,并且顺流向和横流向的振动响应是解耦的。

Abstract

Three-dimensional direct numerical simulations of the vortex-induced vibration of a pin-pin supported near-wall elastic cylinder at a Reynolds number of Re = 300 were conducted using the immersed boundary method based on embedded iteration. The aspect ratio of the slender cylinder was L /D = 25, while the gap ratio G/D ranged from 0.6 to 1.6. This corresponds to scenarios where the cylinder is fully covered by the boundary layer, partially submerged in the boundary layer, and completely outside the boundary layer, respectively. In the single-mode vibration regime, the vibration and the lift and drag coefficients of the cylinder at G/D = 0.6 and 1.1 are dominated by a single frequency. In contrast, at G/D = 1.6, two frequency components appear near the natural frequency. In the multi-mode vibration regime, the excitation and superposition of multiple modes cause the vibration and the lift and drag coefficients of the cylinder to exhibit a spatial-temporal distribution characterized by traveling waves. The merge of the upward-curling boundary layer and the wake vortices shed from the upper surface of the cylinder, together with the suppression of the vortices shed from the lower surface, leads to asymmetric vortex shedding. As the gap ratio increases, the suppression of vortex shedding weakens, and the wake sequentially exhibits the '1S', weak '2S', and '2S' vortex-shedding patterns. For multi-mode vibrations, the drag and lift spectra show the multi-frequency features while the streamwise and cross-flow vibrations are decoupled. 

关键词

涡激振动;弹性圆柱;近壁面效应;多模态振动;间隙比  /

Key words

vortex-induced vibration / flexible cylinder / near wall effect / multi-mode vibration / gap ratio

引用本文

导出引用
杜牧远, 张志猛, 及春宁, 黄韬霖. 近壁弹性圆柱多模态涡激振动响应及尾流模式[J]. 振动与冲击, 2025, 44(12): 27-36
DU Muyuan, ZHANG Zhimeng, JI Chunning, HUANG Taolin. Multi-mode vortex-induced vibration response and wake mode of a flexible cylinder near the wall[J]. Journal of Vibration and Shock, 2025, 44(12): 27-36

参考文献

[1] 吴钰骅. 海底管道-流体-海床相互作用机理和监测技术研究[D].浙江大学, 2007.
[2] 刘旭菲,花  阳,卫昱含,等. 不同间隙比和边界层厚度下的近壁面弹性圆柱涡激振动特性[J]. 振动与冲击,2022,41(21):35-44.
LIU Xu-fei,JI Chun-ning,WEI Yu-han,et al. VIV characteristics of an elastic cylinder near wall under
different gap ratios and boundary layer thicknesses [J]. Journal of Vibration and Shock,2022,41( 21) : 35-44
[3] 张晓娜,及春宁,陈威霖,等. 正三角形排列刚性耦合三 圆柱涡激振动特性及尾涡模式[J]. 振动与冲击,2021, 40(12):132-142.
ZHANG Xiao-na,JI Chun-ning,CHEN Weilin,et al. Vortex-induced vibration features and wake modes of three rigidly coupled circular cylinders in equilateral triangular arrangements[J]. Journal of Vibration and Shock,2021,40( 12) : 132-142.
[4] BOURGUET R, KARNIADAKIS G E, TRIANTAFYLLOU M S. Vortex-induced vibrations of a long flexible cylinder in shear flow[J]. Journal of Fluid Mechanics, 2011, 677: 342-382.
[5] WILLIAMSON C H K, GOVARDHAN R. A brief review of recent results in vortex-induced vibrations[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(6-7):713-735.
[6] MA Y, XU W, PANG T, et al. Dynamic characteristics of a slender flexible cylinder excited by concomitant vortex-induced vibration and time-varying axial tension[J]. Journal of Sound and Vibration, 2020, 485: 115524.
[7] LI F, GUO H, GU H, et al. Laboratory measurements of the effects of interlaminar slip on vortex-induced vibrations of the unbonded umbilical[J]. International Journal of Mechanical Sciences, 2021(2-3):106394.
[8] WANG, ZHICHENGFAN, DIXIATRIANTAFYLLOU, MICHAEL S. KARNIADAKIS, GEORGE EM. A large-eddy simulation study on the similarity between free vibrations of a flexible cylinder and forced vibrations of a rigid cylinder[J]. Journal of Fluids and Structures, 2021, 101(1).
[9] ZHAO M, THAPA J, CHENG L, et al. Three-dimensional transition of vortex shedding flow around a circular cylinder at right and oblique attacks[J]. Physics of Fluids, 2013, 25(1):477-539.
[10] RAGHAVAN K, BERNITSAS M M, MAROULIS D E. Effect of bottom boundary on VIV for energy harnessing at 8× 10 3< Re< 1.5× 10 5[J]. 2009.
[11] THAM D M Y, GURUGUBELLI P S, LI Z, et al. Freely vibrating circular cylinder in the vicinity of a stationary wall[J]. Journal of Fluids and Structures, 2015, 59:103-128.
[12] TSAHALIS. Vortex-Induced Vibrations of a Flexible Cylinder Near a Plane Boundary Exposed to Steady and Wave-Induced Currents[J]. Journal of Offshore Mechanics & Arctic Engineering, 1984, 109(2):206-213.
[13] XIAO CHAO L I, YONG XUE W, GUAN GWEI L I, et al. Experimental investigation of vortex-induced vibrations of long free spans near seabed[J]. Science China Technological Sciences, 2011, 54(003):698-704.
[14] XIAO CHAO, YONG XUE W, GUO YU, et al. Mode Transitions in Vortex-induced Vibrations of a Flexible Pipe near Plane Boundary[J]. Journal of Marine Science and Application, 2013, 12(3):10.
[15] ZHANG Z, JI C, ALAM M M, et al. Dynamics and wake structure of a near-wall flexible cylinder[J]. International Journal of Mechanical Sciences, 2022, 222:107229-.
[16] 花阳. 近壁面圆柱绕流和涡激振动的三维数值模拟[D].天津大学, 2024-08-02.
[17] JI C, MUNJIZA A, WILLIAMS J J R. A novel iterative direct-forcing immersed boundary method and its finite volume applications[J]. Journal of Computational Physics, 2012, 231(4):1797-1821.
[18] CHEN W, JI C, XU W, et al. Response and wake patterns of two side-by-side elastically supported circular cylinders in uniform laminar cross-flow[J]. Journal of Fluids and Structures, 2015, 55: 218-236.
[19] R. Bourguet, G. E. Karniadakis, and M. S. Triantafyllou, “On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60 degrees[J].Journal  of  Fluids & Structures,2015,53:58–69.
[20] J. Thapa, M. Zhao, T. Zhou, and C. Liang, “Three-dimensional simulation of vortex shedding flow in the wake of a yawed circular cylinder near a plane boundary at a Reynolds number of 500[J].Ocean Engineering, 2014,87(9):25–39.
[21] FAN D, WANG Z, TRIANTAFYLLOU M S, et al. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow[J]. Journal of Fluid Mechanics, 2019, 881:815-858.
[22] Vandiver, J.K., Jaiswal, V., Jhingran, V. Insights on vortex-induced, traveling waves on long risers.Journal of Fluids and Structures, 2009,25 (4):641–653.
[23] Dahl, J.M., Hover, F.S., Triantafyllou, M.S., Oakley, O.H., . Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[J].Journal of Fluid Mechanics,2010,643:395–424.
[24] ROACHE P J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies[J]. Journal of Fluids Engineering, 1994, 116(3):405-413.
[25] ROACHE, P. J. Quantification of uncertainty in computational fluid dynamics[J].Annual Review of Fluid Mechanics, 1997, 29(1):123-160.
[26] JIANG H, CHENG L. Strouhal–Reynolds number relationship for flow past a circular cylinder[J]. Journal of Fluid Mechanics, 2017, 832:170-188.
[27] ZHONG, LI, JAIMAN, et al. Coupled dynamics of vortex-induced vibration and stationary wall at low Reynolds number[J]. Physics of Fluids, 2017, 29(9):1-21.
[28] GOVARDHAN R, WILLIAMSON C H K. Critical mass in vortex-induced vibration of a cylinder[J]. European Journal of Mechanics, 2004, 23(1):17-27.
[29] ZHANG Z, JI C, XU D, et al. Effect of yaw angle on vibration mode transition and wake structure of a near-wall flexible cylinder[J]. Physics of Fluids, 2022, 34(7): -.

PDF(2664 KB)

Accesses

Citation

Detail

段落导航
相关文章

/