带有限位器的cut-out压电梁采集性能分析和实验

李浚超1, 张晓芳1, 姜文安1, 毕勤胜1, 陈立群2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 70-79.

PDF(2528 KB)
PDF(2528 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 70-79.
振动理论与交叉研究

带有限位器的cut-out压电梁采集性能分析和实验

  • 李浚超1,张晓芳*1,姜文安1,毕勤胜1,陈立群2
作者信息 +

Performance analysis and experiment of cut-out piezoelectric beam with limiter

  • LI Junchao1,ZHANG Xiaofang*1,JIANG Wenan1,BI Qinsheng1,CHEN Liqun2
Author information +
文章历史 +

摘要

振动能量采集是一个热门的研究领域,已有研究工作主要集中于自由的环境空间。为适应有限狭小空间的极端环境,本文设计了一种带有限位器的cut-out型压电梁采集器。该采集器由cut-out型压电梁、两对限位器和集中质量块组成。基于压电守恒关系,建立了系统的动力学方程。利用直接数值积分方法,分析了限位器间距、系统刚度、外部激励幅值及机电耦合系数对采集频率带宽、电压以及振幅的影响。通过与没有限位器作用的线性采集系统对比,发现合理的限位间距和适当的刚度、加速度幅值和压电系数可以拓宽采集频率带宽,增大输出电压及功率。最后,通过实验证实了数值分析的正确性。

Abstract

Vibration energy harvesting is a hot research field, and the existing research work mainly focuses on the free environmental space. In order to adapt to the extreme environment of limited and narrow space, a cut-out piezoelectric beam harvester with limiter is designed in this paper. The harvester is composed of a cut-out piezoelectric beam, two pairs of limiters and concentrated mass blocks. Based on the piezoelectric conservation relationship, the dynamics equation of the system is established. The effects of the distance of the limiter, the stiffness of the system, the external excitation amplitude and the electromechanical coupling coefficient on the frequency bandwidth, voltage and amplitude of the acquisition were analyzed by direct numerical integration method. By comparing with the linear harvester system without limiter, it is found that the acquisition frequency bandwidth, output voltage and power can be increased by reasonable limit spacing, proper stiffness, acceleration amplitude and piezoelectric coefficient. Finally, the correctness of the numerical analysis is verified by experiments.

关键词

限位器 / 碰撞 / 宽频带 / 压电能量采集

Key words

limiter / collision / broadband band / piezoelectric energy harvesting

引用本文

导出引用
李浚超1, 张晓芳1, 姜文安1, 毕勤胜1, 陈立群2. 带有限位器的cut-out压电梁采集性能分析和实验[J]. 振动与冲击, 2025, 44(12): 70-79
LI Junchao1, ZHANG Xiaofang1, JIANG Wenan1, BI Qinsheng1, CHEN Liqun2. Performance analysis and experiment of cut-out piezoelectric beam with limiter[J]. Journal of Vibration and Shock, 2025, 44(12): 70-79

参考文献

[1] 孙健,李以贵,刘景全,等. 微压电式振动能量采集器的研究进展[J]. 微纳电子技术,2009,46(11):673-677.
SUN Jian, LI Yigui, LlU Jingquan, et al. Trends of MEMS.Based piezoelectric vibration energyharvesters [J]. Micronanoelectronic Technology, 2009, 46(11): 673-677.
[2] QI N, YIN Y, DAI K, WU C, WANG X, YOU Z. Comprehensive optimized hybrid energy storage system for long-life solar-powered wireless sensor network nodes[J]. Applied Energy, 2021, 290:116780.
[3] PRIYA S J, SONG H C, ZHOU Y, VARGHESE R, CHOPRA A, KIM S G, KANNO I, WU L, HA D, RYU J, POLCAWICH R. A review on piezoelectric energy harvesting: Materials, methods, and circuits[J]. Energy Harvesting and System, 2017, 4:3–39.
[4] SEZER N, KOC M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting[J]. Nano Energy, 2021, 80:105567.
[5] SU Y, LI Q, AMAGAT J, CHEN M. 3D spring-based piezoelectric energy generator[J]. Nano Energy, 2021, 90:106578.
[6] XU J W, XIA D W, LAI Z H, CHEN G, DAI W X, WANG J X, YANG H X. Experimental study of vibration modes switching based triple frequency-up converting energy harvesting with pre-biased displacement[J]. Smart Materials and Structures, 2024, 33:045035.
[7] 石慧荣,左存胜,高全福. 随动压电磁耦合能量采集器的组合共振分析[J]. 振动与冲击, 2024, 43(3): 209-217.
SHI Huirong, ZUO Cunsheng, GAO Quanfu. Combined resonance analysis of a servo piezoelectric-magnetic coupled energy harvester[J]. Journal of Vibration and Shock, 2024, 43(3): 209-217.
[8] CARLOS D M, DAVID T, ALPER E. On the electrode segmentation for piezoelectric energy harvesting from nonlinear limit cycle oscillations in axial flow[J]. Journal of Fluids and Structures, 2018, 82:492-504.
[9] 黄曼娟, 侯诚, 李云飞, 刘会聪, 陈涛, 杨湛, 王凤霞, 孙立宁. 基于碰撞升频的MEMS压电振动能量采集系统[J]. 固体力学学报, 2019, 40(05):478-487.
HUANG Manjuan, HOU Cheng, LI Yunfei, et al. A MEMS piezoelectric energy harvesting system based on impact frequency up-conversion mechanism[J]. Chinese Journal of Solid Mechanics, 2019, 40(05):478-487.
[10] 石朝成, 李响, 袁天辰, 陆泽琦, 宋汉文, 陈立群. 双梁磁力压电振动能量采集器的实验和仿真[J]. 动力学与控制学报, 2017, 15(01):68-74.
SHI Zhaocheng, LI Xiang, Chen Liqun, et al. Experimental and numerical research on a double-beam magnetic vibration piezoelectric energy harvest[J]. Journal of Dynamics and Control, 2017, 15(01):68-74.
[11] 马骁骏, 冷永刚, 刘进军, 范胜波. 三向压电悬臂梁振动能量采集器的研究[J]. 振动与冲击, 2018, 37(22): 57-66.
MA Xiaojun, LENG Yonggang, LIU Jinjun, FAN Shengbo. Three-dimensional piezoelectric cantilever-beam energy harvester[J]. Journal of Vibration and Shock, 2018, 37(22): 57-66.
[12] LI Z, TANG L, YANG W, ZHAO R, LIU K, MACE B. Transient response of a nonlinear energy sink based piezoelectric vibration energy harvester coupled to a synchronized charge extraction interface[J]. Nano Energy, 2021, 87:106179.
[13] LIU S, CHENG Q, ZHAO D, FENG L. Theoretical modeling and analysis of two-degree-of-freedom piezoelectric energy harvester with stopper[J]. Sensors and Actuators A-Physical, 2016, 245:97–105.
[14] FAN K, TAN Q, LIU H, ZHANG Y, CAI M. Improved energy harvesting from low-frequency small vibrations through a monostable piezoelectric energy harvester[J]. Mechanical System and Signal Processing, 2019, 117:594–608.
[15] ZHOU K, DAI H, ABDELKEFI A, NI Q. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesters with different stoppers[J]. International Journal of Mechanical Sciences, 2020, 166:105233.
[16] FAN Y, GHAYESH M H, LU T F, AMABILI M. Design, development, and theoretical and experimental tests of a nonlinear energy harvester via piezoelectric arrays and motion limiters[J]. International Journal of Non-linear Mechanics, 2022, 142:103974.
[17] SHAO N, XU J W, XU X S. Experimental study of a two-degree-of-freedom piezoelectric cantilever with a stopper for broadband vibration energy harvesting[J]. Sensors and Actuators A-Physical, 2022, 344:113742.
[18] ZHAO C Y, HU G B, YANG Y W. A cantilever-type vibro-impact triboelectric energy harvester for wind energy harvesting[J]. Mechanical System and Signal Processing, 2022, 177:109185.
[19] ZHAO L Y, YANG Y W. An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting[J]. Applied Energy, 2018, 212:233-243.
[20] FAN Y M, GHAYESH M H, LU T F. Enhanced nonlinear energy harvesting using combined primary and parametric resonances: Experiments with theoretical verifications[J]. Energy Conversion and Management, 2020, 221:113061.
[21] QI N J, DAI K R, WANG X F, YOU Z. Optimization for piezoelectric energy harvesters with self-coupled structure: A double kill in bandwidth and power[J]. Nano Energy, 2022, 102:107602.
[22] LIU H, LEE C K, KOBAYASHI T, TAY C J, QUAN C G. Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers[J]. Smart Materials and Structures, 2012, 21:035005.
[23] SOLIMAN M S M, ABDELRAHMAN E M, ELSAADANY E F, et al. Design and modeling of a wideband MEMS-based energy harvester with experimental verification [J]. Journal of Micromechanics and Microengineering, 2008, 18(11):115021.
[24] SONG M, ZHANG Y, PENG M, et al. Low frequency wideband nano generators for energy harvesting from natural environment[J]. Nano Energy, 2014, 6(3):66–72.
[25] XU J W, XIA D W, LAI Z H, CHEN G, DAI W X, WANG J W, YANG H X. Experimental study of vibration modes switching based triple frequency-up converting energy harvesting with pre-biased displacement[J]. Smart Materials and Structures, 2024, 33:045035.
[26] ZHANG J H, QIN L F. A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism[J]. Applied Energy, 2019, 240:2634.
[27] 郝玉涛,苏克玮,杨恺. 含弹性碰撞作用的双级双稳态结构振动能量采集研究[J].振动工程学报, 2022, 35(06): 1364-1370.
Hao Yutao, Su Kewei, Yang Kai. Study on Vibration Energy Acquisition of Two-stage bistable structures with Elastic Impact[J]. Journal of Vibration Engineering, 2022, 35(06): 1364-1370.
[28] 陈春,高雪,滕汉东. 碰振升频振动能量电磁式采集系统的动力学建模与分析[J]. 振动与冲击, 2021, 40(12): 290-296.
CHEN Chun, GAO Xue, TENG Handong. Modeling and analysis of the electromagnetic vibro-impact frequency-up energy harvester[J]. Journal of Vibration and Shock, 2021, 40(12): 290-296.
[29] 周诗豪,宋芳. 基于碰撞的多方向压电电磁能量采集器研究[J]. 传感技术学报, 2024, 37(05): 783-788.
Zhou Shihao, Song Fang. Research on Collision-based Multi-directional Piezoelectric Electromagnetic Energy Harvester [J]. Chinese Journal of Sensor Technology, 2024, 37(05): 783-788.
[30] Wu H, Tang L, Yang Y, Soh CK. Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(14):1875-1889.
[31] Deepesh Upadrashta and Yaowen Yang. Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction[J]. Smart Materials and Structures, 2015, 24:045042.

PDF(2528 KB)

80

Accesses

0

Citation

Detail

段落导航
相关文章

/