二系横向减振器安装间隙对车辆动力学性能的影响研究

赵苍鹏1, 代亮成1, 池茂儒1, 郭兆团1, 曾鹏程1, 孙宝恺1, 刘林2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 90-100.

PDF(2714 KB)
PDF(2714 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (12) : 90-100.
振动理论与交叉研究

二系横向减振器安装间隙对车辆动力学性能的影响研究

  • 赵苍鹏1,代亮成*1,池茂儒1,郭兆团1,曾鹏程1,孙宝恺1,刘林2
作者信息 +

Study on effects of installation gap on secondary lateral damper on dynamic performance of railway vehicle

  • ZHAO Cangpeng1,DAI Liangcheng*1,CHI Maoru1,GUO Zhaotuan1,ZENG Pengcheng1,SUN Baokai1,LIU Lin2#br#
Author information +
文章历史 +

摘要

针对动车组拖车滚振试验时二系横向减振器安装间隙所导致的动力学问题,建立了考虑安装间隙、橡胶节点刚度、油液刚度和非线性阻尼特性的二系横向减振器Maxwell模型,开展了车辆模型与减振器模型的动力学联合仿真,分析了减振器不同安装间隙对车辆动力学性能的影响,同时对所有模型都进行了台架试验验证。结果表明:存在安装间隙时,示功图曲线在行程换向后会出现与间隙长度相对应的空行程,降低减振器衰减振动的能力;非线性临界速度随间隙的增加整体上不断下降,在间隙超过一定值后,降势逐渐平缓,趋近于二系横向减振器完全失效后的非线性临界速度;横向平稳性指标随间隙的增加迅速上升,评定等级经历从优到良好再到合格的明显变化,显著降低车辆运行的横向平稳性;脱轨系数和轮轴横向力随间隙的增加相对缓慢增大,一定程度上降低车辆运行的安全性。研究结果对长期服役的减振器精细化建模和车辆的运营维护具有一定的指导意义。

Abstract

In view of the dynamic issues caused by the installation gap on the secondary lateral damper during the roller rig test of the electric multiple units trailer car. A Maxwell model for the secondary lateral damper was established considering installation gap, rubber joint stiffness, oil stiffness, and nonlinear damping characteristics. A dynamic co-simulation of the vehicle model and the damper models was further carried out to analyze the effects of different installation gaps on the damper on the dynamic performance of the vehicle. Meanwhile, all the models had been validated with bench tests. The research results are shown as follows. When the damper has an installation gap, the indicator diagram shows a deadband corresponding to the gap length after stroke reversal, reducing the damper’s ability to suppress vibration. The nonlinear critical speed decreases overall with the increase of the gap, and after the gap exceeds a certain value, the decrease in speed tends to level off, converging to the nonlinear critical speed for the complete failure condition of the secondary lateral dampers. The lateral ride quality index increases rapidly with the increase of the gap, and the evaluation grade undergoes an obvious change from excellent to good and then to qualified, significantly reducing the lateral ride quality of the vehicle running. The derailment coefficient and the wheelset lateral force increase relatively slowly with the increase of the gap, reducing the safety of the vehicle running to some extent. The research results are instructive for the fine modeling of long-service dampers and the operation and maintenance of vehicles.

关键词

安装间隙 / 二系横向减振器 / 联合仿真 / 车辆动力学

Key words

installation gap / secondary lateral damper / co-simulation / vehicle dynamics

引用本文

导出引用
赵苍鹏1, 代亮成1, 池茂儒1, 郭兆团1, 曾鹏程1, 孙宝恺1, 刘林2. 二系横向减振器安装间隙对车辆动力学性能的影响研究[J]. 振动与冲击, 2025, 44(12): 90-100
ZHAO Cangpeng1, DAI Liangcheng1, CHI Maoru1, GUO Zhaotuan1, ZENG Pengcheng1, SUN Baokai1, LIU Lin2. Study on effects of installation gap on secondary lateral damper on dynamic performance of railway vehicle[J]. Journal of Vibration and Shock, 2025, 44(12): 90-100

参考文献

[1] BRUNI S, VINOLAS J, BERG M, et al. Modelling of suspension components in a rail vehicle dynamics context[J]. Vehicle System Dynamics, 2011, 49(7): 1021-1072.
[2] HUANG C H, ZENG J. Comparison of the Maxwell model and a simplified physical model for a railway yaw damper in damping characteristics and vehicle stability assessment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(3): 275-287.
[3] 杨东晓. 铁道车辆抗蛇行减振器动态特性研究[D]. 成都: 西南交通大学, 2015.
YANG Dongxiao. Study on dynamic characteristics of the anti-yaw damper used on railway vehicles[D]. Chengdu: Southwest Jiaotong University, 2015.
[4] TENG W X, SHI H L, LUO R, et al. Improved nonlinear model of a yaw damper for simulating the dynamics of a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(7): 651-665.
[5] 白瑾瑜, 曾京, 石怀龙, 等. 抗蛇行减振器对高速列车稳定性的影响[J]. 振动与冲击, 2020, 39(23): 78-83.
BAI Jinyu, ZENG Jing, SHI Huailong, et al. Effects of anti-hunting shock absorber on stability of high-speed train[J]. Journal of Vibration and Shock, 2020, 39(23): 78-83.
[6] 陈国泰, 卢婧, 程刚. 抗蛇行减振器节点刚度对列车转向架横向振动特性的影响研究[J]. 铁道车辆, 2022, 60(5): 87-91.
CHEN Guotai, LU Jing, CHENG Gang. Research on the influence of joint stiffness of anti-yaw damper on lateral vibration characteristics of train bogie[J]. Rolling Stock, 2022, 60(5): 87-91.
[7] WANG W L, HUANG Y, YANG X J, et al. Non-linear parametric modelling of a high-speed rail hydraulic yaw damper with series clearance and stiffness[J]. Nonlinear Dynamics, 2011, 65(1-2): 13-34.
[8] WANG W L, YU D S, HUANG Y, et al. A locomotive’s dynamic response to in-service parameter variations of its hydraulic yaw damper[J]. Nonlinear Dynamics, 2014, 77(4): 1485-1502.
[9] 徐腾养, 池茂儒, 李涛, 等. 抗蛇行减振器动态性能研究[J]. 机械, 2016, 43(8): 1-5, 32.
XU Tengyang, CHI Maoru, LI Tao, et al. The analysis on dynamic performance of yaw damper[J]. Machinery, 2016, 43(8): 1-5, 32.
[10] HUANG C H, ZENG J, LIANG S L. Carbody hunting investigation of a high speed passenger car[J]. Journal of Mechanical Science and Technology, 2013, 27(8): 2283-2292.
[11] SINGH S K, VISHWAKARMA A, SINGH S R, et al. Effect of suspension parameters on dynamics of a metro coach: A parametric study[J]. Journal of Mechanical Science and Technology, 2023, 37(6): 2741-2753.
[12] LI G, WU R D, DENG X X, et al. Suspension parameters matching of high-speed locomotive based on stability/comfort Pareto optimization[J]. Vehicle System Dynamics, 2022, 60(11): 3848-3867.
[13] 陈旭阳, 王英琳, 王康. 二系悬挂参数对悬挂式单轨车桥耦合系统的动力学性能影响研究[J]. 机械, 2023, 50(2): 38-46.
CHEN Xuyang, WANG Yinglin, WANG Kang. Influence of secondary suspension parameters on dynamic performance of vehicle-bridge coupling system for suspended monorail[J]. Machinery, 2023, 50(2): 38-46.
[14] 李强, 张朝杰, 陈晓洁. 二系横向阻尼对车辆系统动力学性能的影响[J]. 铁道车辆, 2020, 58(5): 1-2, 44.
LI Qiang, ZHANG Chaojie, CHEN Xiaojie. Effect of secondary lateral damping on the dynamics performance of vehicle system[J]. Rolling Stock, 2020, 58(5): 1-2, 44.
[15] 董静, 朱晓泉. 减振器接头刚度对动车组动力学性能影响分析[J]. 机械工程与自动化, 2019(6): 41-43.
DONG Jing, ZHU Xiaoquan. Influence of shock absorber joint stiffness on dynamic performance of EMU[J]. Mechanical Engineering & Automation, 2019(6): 41-43.
[16] 李振华, 王开云, 王超, 等. 二系横向减振器参数对快捷货车动力学性能的影响[J]. 兰州交通大学学报, 2021, 40(1): 90-96.
LI Zhenhua, WANG Kaiyun, WANG Chao, et al. Influence of key parameters of secondary lateral damper on dynamic performance of fast freight wagon[J]. Journal of Lanzhou Jiaotong University, 2021, 40(1): 90-96.
[17] GUO Z T, CHI M R, SUN J F, et al. Experimental and numerical research on the bogie hunting of a high-speed train caused by the empty stroke of yaw damper[J]. Vehicle System Dynamics, 2024, 62(7): 1637-1657.
[18] GAO H X, SUN J F, E S J, et al. Cavitation induced hydraulic yaw damper failure and its effect on railway vehicle dynamic stability[J]. Engineering Failure Analysis, 2024, 161: 108318.
[19] LI G, YAO Y, SHEN L J, et al. Influence of yaw damper layouts on locomotive lateral dynamics performance: Pareto optimization and parameter analysis[J]. Journal of Zhejiang University-SCIENCE A, 2023, 24(5): 450-464.
[20] 蒋益平, 池茂儒, 朱海燕. 不同位置横向减振器失效对地铁车辆动力学性能影响[J]. 科学技术与工程, 2019, 19(10): 210-215.
JIANG Yiping, CHI Maoru, ZHU Haiyan. Effects of lateral damper invalid at different location on the dynamic performance of metro vehicle[J]. Science Technology and Engineering, 2019, 19(10): 210-215.
[21] 于文涛, 徐传波, 郭兆团, 等. 二系横向减振器失效故障对中国标准动车组性能的影响[J]. 中国工程机械学报, 2019, 17(3): 252-255, 262.
YU Wentao, XU Chuanbo, GUO Zhaotuan, et al. Effect of troubles in secondary lateral damper on vehicle dynamic performance of CEMU[J]. Chinese Journal of Construction Machinery, 2019, 17(3): 252-255, 262.
[22] 杨欣, 张鑫, 池茂儒. 二系横向减振器服役特性对车辆动力学性能的影响[J]. 铁道车辆, 2022, 60(3): 66-70.
YANG Xin, ZHANG Xin, CHI Maoru. Influence of service properties of secondary lateral damper on vehicle dynamic performance[J]. Rolling Stock, 2022, 60(3): 66-70.
[23] 李振乾, 牛江, 池茂儒, 等. 车间纵向减振器对空簧倾摆式高速列车动力学性能的影响研究[J]. 振动与冲击, 2023, 42(11): 271-277, 323.
LI Zhenqian, NIU Jiang, CHI Maoru, et al. Study on influence of inter-vehicle longitudinal damper on dynamic performance of air spring tilting high-speed train[J]. Journal of Vibration and Shock, 2023, 42(11): 271-277, 323.
[24] 罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都: 西南交通大学出版社, 2018.
LUO Ren, SHI Huailong. Dynamics of railway vehicle systems and application[M]. Chengdu: Southwest Jiaotong University Press, 2018.
[25] 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 国家铁路局, 2019.
Specification for dynamic performance assessment and testing verification of rolling stock: GB/T 5599—2019[S]. Beijing: National Railway Administration of the People's Republic of China, 2019.

PDF(2714 KB)

111

Accesses

0

Citation

Detail

段落导航
相关文章

/