FRP筋/钢筋混合配筋混凝土梁冲击响应简化分析与预测

张仁波, 李昕晨, 金浏, 杜修力

振动与冲击 ›› 2025, Vol. 44 ›› Issue (13) : 44-53.

PDF(4715 KB)
PDF(4715 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (13) : 44-53.
冲击与爆炸

FRP筋/钢筋混合配筋混凝土梁冲击响应简化分析与预测

  • 张仁波,李昕晨,金浏*,杜修力
作者信息 +

Simplified analysis and prediction of impact response of FRP bars/steel bars hybrid-reinforced concrete beams

  • ZHANG Renbo, LI Xinchen, JIN Liu*, DU Xiuli
Author information +
文章历史 +

摘要

针对目前试验和数值模拟方法复杂且低效的问题,本文研究了纤维增强聚合物(fiber-reinforced polymer,FRP)筋/钢筋混合配筋混凝土梁在冲击荷载下的动态响应的简化分析与预测方法。首先,建立了混合配筋混凝土梁的动态弯-剪抗力模型。其次,基于此模型并考虑应力波传播效应,提出了一种改进的双自由度简化分析模型来预测混合配筋混凝土简支梁的冲击响应,并验证了该模型的准确性。最后,基于量纲分析,通过对双自由度模型计算的120组冲击工况的结果进行回归分析,建立了混合配筋梁的峰值位移和冲击力时程曲线的经验性预测模型。结果表明:该模型的预测误差基本在20%以内,可为混合配筋混凝土简支梁在冲击荷载作用下的工程实践提供一种有效的简化计算方法。 

Abstract

To address the complexity and inefficiency of the current experimental and numerical simulation methods, a simplified analysis and prediction method for the dynamic response of fiber-reinforced polymer (FRP)/steel hybrid-reinforced concrete beams under impact loads was investigated. Firstly, a dynamic bending-shear resistance model of hybrid-reinforced concrete beams was established. Subsequently, based on this model and considering the stress wave propagation effect, an improved two degree of freedom simplified analytical model was proposed to predict the impact response of hybrid-reinforced concrete simply supported beams, and the accuracy of the model was verified. Finally, based on the dimensional analysis, an empirical prediction model of the peak displacement and impact force time history curves of the hybrid-reinforced beams was established by regression analysis of the results of 120 sets of impact conditions calculated with the two degree of freedom model. The results show that the prediction error of the model was basically within 20%, which provides an effective and simplified calculation method for the engineering practice of the hybrid-reinforced concrete simply supported beams under impact loads.

关键词

冲击荷载 / 纤维增强聚合物(FRP)筋 / 混合配筋混凝土梁 / 双自由度模型 / 设计方法

Key words

impact loads / fiber-reinforced polymer (FRP) bars / hybrid-reinforced concrete beam / two degree of freedom (2DOF) model / design method

引用本文

导出引用
张仁波, 李昕晨, 金浏, 杜修力. FRP筋/钢筋混合配筋混凝土梁冲击响应简化分析与预测[J]. 振动与冲击, 2025, 44(13): 44-53
ZHANG Renbo, LI Xinchen, JIN Liu, DU Xiuli. Simplified analysis and prediction of impact response of FRP bars/steel bars hybrid-reinforced concrete beams[J]. Journal of Vibration and Shock, 2025, 44(13): 44-53

参考文献

[1] 葛文杰, 张继文, 戴航, 等. FRP筋和钢筋混合配筋增强混凝土梁受弯性能[J]. 东南大学学报(自然科学版), 2012, 42(1): 114-119.
GE W J, ZHANG J W, DAI H, et al. Flexural behavior of concrete beam with hybrid reinforcement of FRP bars and steel bars[J]. Journal Of Southeast University(Natural Science Edition), 2012, 42(1): 114-119.
[2] 孔祥清, 于洋, 邢丽丽, 等. BFRP筋与钢筋混合配筋混凝土梁抗弯性能试验研究[J]. 玻璃钢/复合材料, 2018(8): 48-54.
KONG X Q, YU Y, XING L L, et al. Experiment study on the flexural behaviour of hybrid BFRP/steel reinforced concrete beams[J]. FRP/Composites, 2018(8): 48-54.
[3] LAU D, PAM H J. Experimental study of hybrid FRP reinforced concrete beams[J]. Engineering Structures, 2010, 32(12): 3857-3865.
[4] EL Refai A, ABED F, AL-RAHMANI A. Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups[J]. Construction and Building Materials, 2015, 96: 518-529.
[5] QIN R Y, ZHOU A, LAU D. Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams[J]. Composites Part B: Engineering, 2017, 108: 200-209.
[6] FUJIKAKE K, LI B, SOEUN S. Impact response of reinforced concrete beam and its analytical evaluation[J]. Journal of Structural Engineering, 2009, 135(8): 938-950.
[7] 赵德博. 冲击荷载作用下钢筋混凝土梁响应特征及设计方法研究[D]. 湖南: 湖南大学, 2017.
[8] LIAO W Z, LIU K X, MA C, et al. Experimental study on consistency of the impact performance between composite beams and reinforced concrete beams[J]. Composite Structures, 2023, 308: 116677.
[9] PHAM T M, HAO Y F, HAO H. Sensitivity of impact behaviour of RC beams to contact stiffness[J]. International Journal of Impact Engineering, 2018, 112: 155-164.
[10] HUANG Z J, CHEN W S, TRAN T T, et al. Experimental and numerical study on concrete beams reinforced with Basalt FRP bars under static and impact loads[J]. Composite Structures, 2021, 263: 113648.
[11] GOLDSTON M, REMENNIKOV A, SHEIKH M N. Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading[J]. Engineering Structures, 2016, 113: 220-232.
[12] 朱德举, 钟伟霖, 徐振钦, 等. BFRP筋增强海水海砂混凝土梁的抗冲击性能[J]. 振动与冲击, 2023, 42(14): 220-228.
ZHU D J, ZHONG W L, XU Z Q, et al. Impact resistance of seawater sea-sand concrete beams reinforced with BFRP bars[J]. Journal of Vibration and Shock, 2023, 42(14): 220-228.
[13] 仝朝康, 张景峰, 冀豪豪, 等. 钢筋混凝土梁冲击后剩余承载力及承载机制研究[J]. 振动与冲击, 2023, 42(11): 122-130.
TONG C K, ZHANG J F, JI H H, et al. Residual resistance and bearing mechanism of RC beam after impact[J]. Journal of Vibration and Shock, 2023, 42(11): 122-130.
[14] YI W J, ZHAO D B, KUNNATH S K. Simplified approach for assessing shear resistance of reinforced concrete beams under impact loads[J]. Aci Structural Journal, 2016, 113(4): 747756.
[15] LI H W, CHEN W S, PHAM T M, et al. Analytical and numerical studies on impact force profile of RC beam under drop weight impact[J]. International Journal of Impact Engineering, 2021, 147: 103743.
[16] JIA P C, WU H, FANG Q. An improved 2DOF model for dynamic behaviors of RC members under lateral low-velocity impact[J]. International Journal of Impact Engineering, 2023, 173: 104460.
[17] ZHAO D B, YI W J, KUNNATH S K. Numerical simulation and shear resistance of reinforced concrete beams under impact[J]. Engineering Structures, 2018, 166: 387-401.
[18] KISHI N, MIKAMI H. Empirical formulas for designing reinforced concrete beams under impact loading[J]. ACI Structural Journal, 2012, 109(4): 509-519.
[19] 赵德博, 易伟建. 钢筋混凝土梁抗冲击性能和设计方法研究[J]. 振动与冲击, 2015, 34(11): 139-145. 
ZHAO D B, YI W J. Anti-impact behavior and design method for RC beams[J]. Journal of Vibration and Shock, 2015, 34(11): 139-145.
[20] MACHADO M, MOREIRA P, FLORES P, et al. Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory[J]. Mechanism and Machine Theory, 2012, 53: 99-121.
[21] CEB-FIP2010. Fib model code for concrete structures 2010[S]. Berlin: Verlag für Architectur und technische Wissenschaften, 2013.
[22] 侯川川. 低速横向冲击荷载下圆钢管混凝土构件的力学性能研究[D]. 北京: 清华大学, 2012.
[23] ZHU L, SUN B, HU H, et al. Constitutive equations of basalt filament tows under quasi-static and high strain rate tension[J]. Materials Science and Engineering: A, 2010, 527(13): 3245-3252.
[24] 沈圣, 吴智深, 杨才千, 等. 基于分布式光纤应变传感技术的改进共轭梁法监测结构变形分布研究[J]. 土木工程学报, 2010, 43(07): 63-70.
SHEN S, WU Z S, YANG C Q, et al. An improved conjugated beam method for structural deformation monitoring based on distributed optical fiber strain sensing technique[J]. China Civil Engineering Journal, 2010, 43(7): 63-70.
[25] MUTTONI. Punching Shear Strength of Reinforced Concrete Slabs without Transverse Reinforcement[J]. ACI Structural Journal, 2008, 105(4).
[26] PHAM T M, HAO H. Impact behavior of FRP-strengthened RC beams without stirrups[J]. Journal of Composites for Construction, 2016, 20(4): 04016011.
[27] JIN L, ZHENG M, ZHANG R B, et al. Investigation on the impact response of concrete beams reinforced with hybrid steel-BFRP bars[J]. Journal of Composites for Construction, 2023, 27(4): 04023029.
[28] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010−2010(2015)[S]. 北京: 中国建筑工业出版社, 2016.
[29] HORDIJK D A. Tensile and tensile fatigue behaviour of concrete; experiments, modelling and analyses[J]. Heron, 1992, 37(1): 1-79.

PDF(4715 KB)

95

Accesses

0

Citation

Detail

段落导航
相关文章

/