一类二自由度分数阶参激系统的混沌阈值研究

魏想1, 2, 温少芳2, 3, 申永军3

振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 102-115.

PDF(4958 KB)
PDF(4958 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (15) : 102-115.
振动理论与交叉研究

一类二自由度分数阶参激系统的混沌阈值研究

  • 魏想1,2,温少芳*2,3,申永军3
作者信息 +

Chaos threshold of a class of 2DOF fractional order parametrically excited systems

  • WEI Xiang1,2, WEN Shaofang*2,3, SHEN Yongjun3
Author information +
文章历史 +

摘要

研究了二自由度分数阶参激系统在谐波激励下的分岔与混沌行为。利用Melnikov方法分析了二自由度分数阶参激系统产生Smale马蹄形意义下分岔与混沌的必要条件,得到了其解析结果。将得到的解析结果与数值迭代算法的结果进行对比,结果表明,两种算法得到的混沌阈值曲线的变化趋势一致,吻合度较高,证实了得到的混沌阈值解析曲线的准确性。利用最大Lyapunov指数图、相图、时程图、频谱图以及Poincare截面图分析了一些典型点的动力学响应特性,得到了系统进入混沌运动状态的途径,详细说明了基于Melnikov方法求得的系统混沌边界条件的合理性。最后分析了系统各参数对混沌阈值曲线的影响,研究表明:增大分数阶系数、参激系数、线性阻尼系数和耦合阻尼系数可以抑制混沌运动的发生,而增大线性刚度系数、非线性刚度系数以及分数阶阶次有时会增加系统混沌发生的可能性,以上结论可为实际应用提供分析参考,对此类系统的设计和控制具有一定指导价值。

Abstract

The bifurcation and chaotic behaviour of a two-degree-of-freedom fractional-order parametrically excited system under harmonic excitation are studied. The Melnikov method is used to analyse the necessary conditions for bifurcation and chaos in the sense of Smale horseshoe in a two-degree-of-freedom fractional-order parametric excited system, and its analytical results are obtained. The obtained analytical results are compared with the results of the numerical iterative algorithm. The results show that the change trend of the chaotic threshold curves obtained by the two algorithms is consistent and the degree of consistency is high, which confirms the accuracy of the obtained chaotic threshold analytical curve. The dynamic response characteristics of some typical points are analyzed using the maximum Lyapunov exponent diagram, phase diagram, time history diagram, frequency diagram and Poincare section diagram, and the path for the system to enter a chaotic motion state is obtained. The rationality of the chaotic boundary conditions of the system calculated based on the Melnikov method is explained in detail. Finally, the influence of various system parameters on the chaos threshold curve is analyzed. The research shows that increasing the fractional-order coefficient, parametric excitation coefficient, linear damping coefficient and coupling damping coefficient can suppress the occurrence of chaos; while increasing the linear stiffness coefficient, nonlinear stiffness coefficient and the fractional-order number sometimes increases the possibility of chaos in the system. The above conclusions can provide analysis references for practical applications and have certain guiding values for the design and control of such systems.

关键词

二自由度系统 / Melnikov方法 / 分数阶微分 / 参数激励 / 混沌

Key words

two-degree-of-freedom systems / Melnikov method / fractional-order derivative / parametric excitation / chaos

引用本文

导出引用
魏想1, 2, 温少芳2, 3, 申永军3. 一类二自由度分数阶参激系统的混沌阈值研究[J]. 振动与冲击, 2025, 44(15): 102-115
WEI Xiang1, 2, WEN Shaofang2, 3, SHEN Yongjun3. Chaos threshold of a class of 2DOF fractional order parametrically excited systems[J]. Journal of Vibration and Shock, 2025, 44(15): 102-115

参考文献

[1] OLDHAM K B, SPANIER J. The fractional calculus: theory and applications of differentiation and integration to arbitrary order [M]. New York: Academic Press, 1974.
[2] CAPONETTO R, DONGOLA G, FORTUNA L, et al. Fractional order systems : modeling and control applications [M]. Singapore: World Scientific, 2010. 
[3] Sun H G, Zhang Y, Baleanu D, et al. A new collection of real world applications of fractional calculus in science and engineering[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 64213 -231. 
[4] 郭建斌, 申永军. 分数阶平方阻尼Mathieu振子的动力学分析[J].石家庄铁道大学学报(自然科学版), 2022, 35(03): 98 -103.
Guo J B, Shen Y J. Dynamic analysis of fractional order square damped Mathieu oscillator[J]. Journal of Shijiazhuang Railway University (NATURAL SCIENCE EDITION), 2022, 35 (03): 98 -103.
[5] 王贝宁. 基于分数阶模型的弓网系统振动控制研究[D]. 石家庄铁道大学, 2023.
Wang B N. Research on vibration control of pantograph catenary system based on fractional order model[D]. Shijiazhuang Railway University, 2023.
[6] Zhang C Y, Xiao J. Chaotic Behavior and Feedback Control of Magnetorheological Suspension System With Fractional-Order Derivative[J]. Journal of Computational and Nonlinear Dynamics, 2017, 13(2).
[7] 常宇健, 孙亚婷, 陈恩利, 等. 双频激励下含分数阶非线性汽车悬架系统的混沌研究[J]. 振动工程学报, 2021, 34(06): 1198 -1206.
Chang Y J, Sun Y T, Chen E L, et al. Chaos research of vehicle suspension system with fractional order nonlinearity under dual frequency excitation [J]. Journal of vibration engineering, 2021, 34 (06): 1198 -1206.
[8] 张冬梅, 李锋. 受参数激励屈曲梁的次谐分岔和混沌运动(英文)[J]. 数学理论与应用, 2022, 42(02): 25 -34.
Zhang D M, Li F. Subharmonic bifurcation and chaotic motion of a parametrically excited flexural beam (in English) [J]. Mathematical Theory and Applications, 2022,  42(02): 25 -34.
[9] Du H  F, Yang Z C, Zhou S X. A piezoelectric buckling beam-type bistable energy harvester under rotational excitations [J]. Journal of Physics D: Applied Physics, 2023,  56(44): 444002
[10] 徐玉龙, 楼春钢, 潘殿坤, 等. 基于固支-简支屈曲梁的旋转驱动双稳态柔顺机构[J]. 机械设计与研究, 2024, 40(02): 105 -112.
Xu Y L, Lou C G, Pan D K, et al. Rotationally driven bistable flexure mechanism based on a solidly supported-simply supported flexure beam[J]. Machine Design & Research, 2024, 40(02): 105 -112.
[11] 侯磊, 陈予恕, 李忠刚. 一类两自由度参激系统在常数激励下的响应研究[J].物理学报, 2014, 63(13): 254 -261.
Hou L, Chen Y S, Li Z G. Constant-excitation caused response in a class of parametrically excited systems with two degrees of freedom [J]. Acta Physica Sinica, 2014, 63(13): 254 -261. 
[12] Jamali U H, Aljibori S S H, Tamimi A J N A, et al. A New Geometrical Design to Overcome the Asymmetric Pressure Problem and the Resulting Response of Rotor-Bearing System to Unbalance Excitation[J]. Axioms, 2023, 12(9):  812.
[13] Yang Y Q, Zhou Z X, Guan Y L, et al. Nonlinear Coupled Vibration Behavior of BFRP Cables on Long-Span Cable-Stayed Bridges under Parametric Excitation[J]. Buildings, 2023, 13(12): 3082.
[14] Yang F, Zhao H W, Li A Q, et al. Experimental–Numerical Analysis on the Cable Vibration Behavior of a Long-Span Rail-Cum-Road Cable-Stayed Bridge under the Action of High-Speed Trains[J]. Applied Sciences, 2023, 13(19):  11082.
[15] Gu D X, Zhang Y Y, Mughal I, et al. Stochastic responses of nonlinear inclined cables with an attached damper and random excitations[J]. Nonlinear Dynamics, 2024, 112(18): 15969 -15986. 
[16] Lv H W, Li L, Li Y H. Non-linearly parametric resonances of an axially moving viscoelastic sandwich beam with time-dependent velocity[J]. Applied Mathematical Modelling, 2018, 5383 -105.
[17] Jin H, Li C G, Yang T Z, et al. Dynamic analysis of moving beams featuring time-varying velocity under self-excited force moving along with the end[J]. Meccanica, 2022, 57(12): 2905 -2927.
[18] 时培明, 李纪召, 刘彬, 等. 一类准周期参激非线性扭振系统的周期簇发[J]. 振动与冲击, 2012, 31(04): 100 -104.
Shi P M, Li J Z, Liu B, et al. Periodic clustering of a class of quasi-periodic parametrically excited nonlinear torsional vibration systems[J]. Journal of Vibration and Shock, 2012, 31(04): 100 -104. 
[19] F. J Y K, J. K A, B. N T, et al. Influence of Amplitude-Modulated Force and Nonlinear Dissipation on Chaotic Motions in a Parametrically Excited Hybrid Rayleigh–Van der Pol–Duffing Oscillator[J]. International Journal of Bifurcation and Chaos, 2023, 33(03): 2330006. 
[20] 侯磊, 罗钢, 苏小超, 等. 常数激励与简谐激励联合作用下Duffing系统的非线性振动[J]. 振动与冲击, 2020, 39(04): 49 -54.
Hou L, Luo G, Su X C, et al. Nonlinear vibration of a Duffing system under combined constant and simple harmonic excitation[J]. Journal of Vibration and Shock, 2020, 39(04): 49 -54. 
[21] Osu O B, Ujumadu N R, Eze O E, et al. A REVIEW OF METHODS FOR OBTAINING THE CONDITIONS FOR THE ONSET OF CHAOTIC BEHAVIOURS FOR THE PARAMETRICALLY EXCITED STOCHASTIC SYSTEM WITH CUBIC NONLINEARITY[J]. Far East Journal of Applied Mathematics, 2020, 105(1-2): 1 -20. 
[22] Zhang Y X, Han R, Zhang P F. Stochastic response of chain-like hysteretic MDOF systems endowed with fractional derivative elements and subjected to combined stochastic and periodic excitation[J]. Acta Mechanica, 2024, 235(8): 5019 -5039. 
[23] Jia W T, Luo M X, Ni F, et al. Response and reliability of suspension system under stochastic and periodic track excitations by path integral method[J]. International Journal of Non-Linear Mechanics, 2023, 157: 104544.
[24] Hickey J, Butlin T, Langley R, et al. A time and ensemble equivalent linearization method for nonlinear systems under combined harmonic and random excitation[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2024, 238(9): 3724 -3745. 
[25] Wang M Q, Zhou L F, Chen E L, et al. Dynamical characterization of a Duffing-Holmes system containing nonlinear damping under constant excitation[J]. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2023, 175(P1): 113926.
[26] Wang M Q, Ma W L, Chen E L, et al. Confusion threshold study of the Duffing oscillator with a nonlinear fractional damping term[J]. Journal of Low Frequency Noise Vibration and Active Control, 2020, 40(2): 146134842092268. 
[27] Wang C Y, Wang M Q, Xing W C, et al. Bifurcation and Chaotic Behavior of Duffing System with Fractional-Order Derivative and Time Delay[J]. Fractal and Fractional, 2023, 7(8): 638-.
[28] 秦浩, 温少芳, 申永军, 等. 基于Melnikov方法的分数阶Duffing振子混沌阈值解析研究[J]. 振动与冲击, 2021, 40(06): 33 -40+134.
Qin H, Wen S F, Shen Y J, et al. Analytical study of the fractional order Duffing oscillator chaos threshold based on Melnikov's method[J]. Journal of Vibration and Shock, 2021, 40(06): 33 -40+134. 
[29] 张思进, 王紧业, 文桂林. 二自由度碰振准哈密顿系统亚谐轨道分析[J]. 振动与冲击, 2018, 37(02): 102 -107.
Zhang S J, Wang T Y, Wen G L. Subharmonic orbital analysis of two-degree-of-freedom touching vibration quasi-Hamiltonian systems[J]. Journal of Vibration and Shock, 2018, 37(02): 102 -107. 
[30] 张思进, 刘喻, 吉德三. 二自由度碰振准哈密顿系统双碰周期解的Melnikov方法[J]. 湖南大学学报(自然科学版), 2019, 46(02):67 -74.
Zhang S J, Liu Y, Ji D S. Melnikov's method for double-bumper periodic solutions of two-degree-of-freedom bumper vibration quasi-Hamiltonian systems[J].  Journal of Hunan University(Natural Science Edition), 2019, 46(02): 67 -74. 
[31] Cao T X, Hu Y D. Chaos prediction and bifurcation of soft ferromagnetic thin plates with motion in dual air-gap magnetic fields excited by armatures[J]. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2024, 183: 114804. 
[32] Zhang W, Wu L Q, Ma S W. Chaotic Wave Motions and Chaotic Dynamic Responses of Piezoelectric Laminated Composite Rectangular Thin Plate Under Combined Transverse and In-Plane Excitations[J]. International Journal of Applied Mechanics, 2018, 10(10): 28. 
[33] Peng R Y, Li Q H, Zhang W. Homoclinic bifurcation analysis of a class of conveyor belt systems with dry friction and impact[J]. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena, 2024, 180: 114469. 
[34] Jie Z, Jinyou H, Longhao X, et al. Dynamical analysis, circuit implementation, and simultaneous application of a novel four-dimensional hyperchaotic system based on cosine functions[J]. Microelectronic Engineering, 2023, 271 -272.
[35] Kazuyuki Y. Periodic Perturbations of Codimension-Two Bifurcations with a Double Zero Eigenvalue in Symmetrical Dynamical Systems[J]. International Journal of Bifurcation and Chaos, 2023, 33(12): 2330030. 
[36] Egor S. On numerical bifurcation analysis of periodic motions of autonomous Hamiltonian systems with two degrees of freedom[J]. Journal of Physics: Conference Series, 2021, 1959(1).
[37] Liu S S, Han M A. Bifurcation theory of limit cycles by higher order Melnikov functions and applications[J]. Journal of Differential Equations, 2024, 40329 -66.
[38] Anjum N, He J. Laplace transform: Making the variational iteration method easier[J]. Applied Mathematics Letters, 2019, 92134 -138.
[39] Alomari K A, Salameh M M W, Alaroud M, et al. Predictor Laplace Fractional Power Series Method for Finding Multiple Solutions of Fractional Boundary Value Problems[J]. Symmetry, 2024, 16(9): 1152 -1152.
[40] Guo T, Wei Y H, Zhang L Y, et al. Fractional-order input-to-state stability and its converse Lyapunov theorem[J]. Journal of the Franklin Institute, 2024, 362(1): 107414 -107414.

PDF(4958 KB)

Accesses

Citation

Detail

段落导航
相关文章

/